tle-orbit-explainer / README.md
jackal79's picture
Update README.md
eedd29d verified
---
pipeline_tag: text-generation
base_model: Qwen/Qwen1.5-7B
library_name: peft
tags:
- LoRA
- TLE
- space-domain-awareness
- trajectory-prediction
- orbital-mechanics
license: other
---
# tle-orbit-explainer
A LoRA adapter for **Qwen-1.5-7B** that translates raw Two-Line Elements (TLEs) into natural-language orbit explanations, decay risk scores, and anomaly flags for general space awareness workflows.
---
## Model Details
### Model Description
| | |
| ------------------ | ----------------------------------------------------------- |
| **Developed by** | Jack Al-Kahwati / Stardrive |
| **Funded by** | ⬜️ (Self-funded) |
| **Shared by** | jackal79 (Hugging Face) |
| **Model type** | LoRA adapter (`peft==0.10.0`) |
| **Languages** | English |
| **License** | TLE-Orbit-NonCommercial v1.0 ([custom terms](./LICENSE.txt)) |
| **Finetuned from** | [`Qwen/Qwen1.5-7B`](https://huggingface.co/Qwen/Qwen1.5-7B) |
### Model Sources
| | |
| ---------------- | ---------------------------------------------------------------------------------------------------------- |
| **Repository** | [https://huggingface.co/jackal79/tle-orbit-explainer](https://huggingface.co/jackal79/tle-orbit-explainer) |
| **Paper / Blog** | https://medium.com/@jack_16944/enhancing-space-awareness-with-fine-tuned-transformer-models-introducing-tle-orbit-explainer-67ae40653ed5 |
---
## Uses
### Direct Use
* Quick summarization of satellite orbital states for analysts
* Plain-language TLE explanations for educational purposes
* Offline dataset labeling (orbital classifications)
### Downstream Use
* Combine with SGP4 for enhanced position forecasting
* Integration into satellite autonomy stacks (cubesats, small-scale hardware)
* Pre-prompted agent support in secure orbital management workflows
### Out-of-Scope Use
* High-precision orbit propagation without additional physics modeling
* Applications related to targeting, weapons systems, or lethal autonomous decisions
* Jurisdictions prohibiting ML or data export (verify with ITAR/EAR guidelines)
---
## Bias, Risks, & Limitations
| Category | Note |
| ------------------- | ------------------------------------------------------------------------------------------------------------- |
| **Data bias** | Trained primarily on decayed objects (`DECAY = 1`), possibly underestimating longevity for active satellites. |
| **Temporal limits** | Operates on snapshot data; does not handle continuous high-frequency time-series. |
| **Language** | Supports explanations in English only. |
| **Accuracy** | Potential inaccuracies in decay date predictions; verify independently. |
### Recommendations
Incorporate independent physics-based validation before operational use and maintain a human-in-the-loop for any critical or high-risk decisions.
---
## How to Get Started
```python
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from peft import PeftModel
base = "Qwen/Qwen1.5-7B"
lora = "jackal79/tle-orbit-explainer"
tok = AutoTokenizer.from_pretrained(base)
model = AutoModelForCausalLM.from_pretrained(base, device_map="auto")
model = PeftModel.from_pretrained(model, lora) # merges LoRA
pipe = pipeline("text-generation", model=model, tokenizer=tok, device=0)
prompt = """### Prompt:
1 25544U 98067A 24079.07757601 .00016717 00000+0 10270-3 0 9994
2 25544 51.6400 337.6640 0007776 35.5310 330.5120 15.50377579499263
### Reasoning:
"""
print(pipe(prompt, max_new_tokens=120)[0]["generated_text"])
```
---
## License
This model is released under the **TLE-Orbit-NonCommercial License v1.0**.
- ✅ Free for non-commercial use, research, and internal evaluation
- 🚫 Commercial, operational, or for-profit use requires a separate license
To request a commercial license, contact: [email protected]