introvoyz041's picture
Upload README.md with huggingface_hub
9375225 verified
metadata
language:
  - en
library_name: transformers
pipeline_tag: text-generation
tags:
  - shining-valiant
  - shining-valiant-3
  - valiant
  - valiant-labs
  - mistral3
  - mistral
  - mistral-common
  - ministral-3-14b
  - ministral
  - reasoning
  - code
  - code-reasoning
  - science
  - science-reasoning
  - physics
  - biology
  - chemistry
  - earth-science
  - astronomy
  - machine-learning
  - artificial-intelligence
  - compsci
  - computer-science
  - information-theory
  - ML-Ops
  - math
  - cuda
  - deep-learning
  - transformers
  - agentic
  - LLM
  - neuromorphic
  - self-improvement
  - complex-systems
  - cognition
  - linguistics
  - philosophy
  - logic
  - epistemology
  - simulation
  - game-theory
  - knowledge-management
  - creativity
  - problem-solving
  - architect
  - engineer
  - developer
  - creative
  - analytical
  - expert
  - rationality
  - conversational
  - chat
  - instruct
  - mlx
  - mlx-my-repo
base_model: ValiantLabs/Ministral-3-14B-Reasoning-2512-ShiningValiant3
datasets:
  - sequelbox/Celestia3-DeepSeek-R1-0528
  - sequelbox/Mitakihara-DeepSeek-R1-0528
  - sequelbox/Raiden-DeepSeek-R1
license: apache-2.0

introvoyz041/Ministral-3-14B-Reasoning-2512-ShiningValiant3-mlx-4Bit

The Model introvoyz041/Ministral-3-14B-Reasoning-2512-ShiningValiant3-mlx-4Bit was converted to MLX format from ValiantLabs/Ministral-3-14B-Reasoning-2512-ShiningValiant3 using mlx-lm version 0.28.3.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("introvoyz041/Ministral-3-14B-Reasoning-2512-ShiningValiant3-mlx-4Bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)