Fix pipeline_tag π€
#2
by
merve
HF Staff
- opened
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
-
pipeline_tag:
|
| 4 |
library_name: transformers
|
| 5 |
---
|
| 6 |
|
|
@@ -43,27 +43,33 @@ The following provides demo code illustrating how to generate text using JanusCo
|
|
| 43 |
> Please use transformers >= 4.55.0 to ensure the model works normally.
|
| 44 |
|
| 45 |
```python
|
| 46 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 47 |
import torch
|
|
|
|
| 48 |
|
| 49 |
model_name = "internlm/JanusCoder-14B"
|
|
|
|
| 50 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 51 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
| 52 |
|
| 53 |
messages = [
|
| 54 |
-
{
|
| 55 |
-
"role": "user",
|
| 56 |
-
"content": [
|
| 57 |
-
{"type": "text", "text": "Create a line plot that illustrates function y=x."},
|
| 58 |
-
],
|
| 59 |
-
}
|
| 60 |
]
|
| 61 |
|
| 62 |
-
inputs = tokenizer.apply_chat_template(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
|
| 66 |
-
print(decoded_output)
|
| 67 |
```
|
| 68 |
|
| 69 |
## Citation
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
pipeline_tag: text-generation
|
| 4 |
library_name: transformers
|
| 5 |
---
|
| 6 |
|
|
|
|
| 43 |
> Please use transformers >= 4.55.0 to ensure the model works normally.
|
| 44 |
|
| 45 |
```python
|
|
|
|
| 46 |
import torch
|
| 47 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 48 |
|
| 49 |
model_name = "internlm/JanusCoder-14B"
|
| 50 |
+
|
| 51 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 52 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 53 |
+
model_name, device_map="auto", dtype="auto",
|
| 54 |
+
).eval()
|
| 55 |
|
| 56 |
messages = [
|
| 57 |
+
{"role": "user", "content": "Create a line plot that illustrates function y=x."}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
]
|
| 59 |
|
| 60 |
+
inputs = tokenizer.apply_chat_template(
|
| 61 |
+
messages,
|
| 62 |
+
add_generation_prompt=True,
|
| 63 |
+
tokenize=True,
|
| 64 |
+
return_dict=True,
|
| 65 |
+
return_tensors="pt"
|
| 66 |
+
).to(model.device)
|
| 67 |
+
|
| 68 |
+
with torch.inference_mode():
|
| 69 |
+
generate_ids = model.generate(**inputs, max_new_tokens=200)
|
| 70 |
+
decoded_output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True)
|
| 71 |
|
| 72 |
+
print(decoded_output[0])
|
|
|
|
|
|
|
| 73 |
```
|
| 74 |
|
| 75 |
## Citation
|