|
|
--- |
|
|
library_name: hivex |
|
|
original_train_name: AerialWildfireSuppression_difficulty_3_task_3_run_id_2_train |
|
|
tags: |
|
|
- hivex |
|
|
- hivex-aerial-wildfire-suppression |
|
|
- reinforcement-learning |
|
|
- multi-agent-reinforcement-learning |
|
|
model-index: |
|
|
- name: hivex-AWS-PPO-baseline-task-3-difficulty-3 |
|
|
results: |
|
|
- task: |
|
|
type: sub-task |
|
|
name: minimize_time_fire_burning |
|
|
task-id: 3 |
|
|
difficulty-id: 3 |
|
|
dataset: |
|
|
name: hivex-aerial-wildfire-suppression |
|
|
type: hivex-aerial-wildfire-suppression |
|
|
metrics: |
|
|
- type: crash_count |
|
|
value: 0.13333333730697633 +/- 0.191942979707825 |
|
|
name: Crash Count |
|
|
verified: true |
|
|
- type: extinguishing_trees |
|
|
value: 14.541666804254055 +/- 26.166017687701483 |
|
|
name: Extinguishing Trees |
|
|
verified: true |
|
|
- type: extinguishing_trees_reward |
|
|
value: 72.70833533406258 +/- 130.83009063914585 |
|
|
name: Extinguishing Trees Reward |
|
|
verified: true |
|
|
- type: fire_out |
|
|
value: 0.2750000022351742 +/- 0.37570596434541476 |
|
|
name: Fire Out |
|
|
verified: true |
|
|
- type: fire_too_close_to_city |
|
|
value: 0.8 +/- 0.37696851746252596 |
|
|
name: Fire too Close to City |
|
|
verified: true |
|
|
- type: preparing_trees |
|
|
value: 428.6583277225494 +/- 398.934153701881 |
|
|
name: Preparing Trees |
|
|
verified: true |
|
|
- type: preparing_trees_reward |
|
|
value: 428.6583277225494 +/- 398.934153701881 |
|
|
name: Preparing Trees Reward |
|
|
verified: true |
|
|
- type: water_drop |
|
|
value: 39.44999980926514 +/- 25.819498042077623 |
|
|
name: Water Drop |
|
|
verified: true |
|
|
- type: water_pickup |
|
|
value: 39.03333339691162 +/- 25.770557823927213 |
|
|
name: Water Pickup |
|
|
verified: true |
|
|
- type: cumulative_reward |
|
|
value: 570.5418758392334 +/- 430.32791406985166 |
|
|
name: Cumulative Reward |
|
|
verified: true |
|
|
--- |
|
|
|
|
|
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>3</code> with difficulty <code>3</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br> |
|
|
|
|
|
Environment: **Aerial Wildfire Suppression**<br> |
|
|
Task: <code>3</code><br> |
|
|
Difficulty: <code>3</code><br> |
|
|
Algorithm: <code>PPO</code><br> |
|
|
Episode Length: <code>3000</code><br> |
|
|
Training <code>max_steps</code>: <code>1800000</code><br> |
|
|
Testing <code>max_steps</code>: <code>180000</code><br><br> |
|
|
|
|
|
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br> |
|
|
Download the [Environment](https://github.com/hivex-research/hivex-environments) |
|
|
|
|
|
[hivex-paper]: https://arxiv.org/abs/2501.04180 |