|
|
--- |
|
|
library_name: hivex |
|
|
original_train_name: AerialWildfireSuppression_difficulty_9_task_0_run_id_1_train |
|
|
tags: |
|
|
- hivex |
|
|
- hivex-aerial-wildfire-suppression |
|
|
- reinforcement-learning |
|
|
- multi-agent-reinforcement-learning |
|
|
model-index: |
|
|
- name: hivex-AWS-PPO-baseline-task-0-difficulty-9 |
|
|
results: |
|
|
- task: |
|
|
type: main-task |
|
|
name: main_task |
|
|
task-id: 0 |
|
|
difficulty-id: 9 |
|
|
dataset: |
|
|
name: hivex-aerial-wildfire-suppression |
|
|
type: hivex-aerial-wildfire-suppression |
|
|
metrics: |
|
|
- type: crash_count |
|
|
value: 0.24166667386889457 +/- 0.1750104476777611 |
|
|
name: Crash Count |
|
|
verified: true |
|
|
- type: extinguishing_trees |
|
|
value: 17.141666746139528 +/- 39.513165920891936 |
|
|
name: Extinguishing Trees |
|
|
verified: true |
|
|
- type: extinguishing_trees_reward |
|
|
value: 85.70833311080932 +/- 197.56582920337453 |
|
|
name: Extinguishing Trees Reward |
|
|
verified: true |
|
|
- type: fire_out |
|
|
value: 0.12500000223517418 +/- 0.24106852927463382 |
|
|
name: Fire Out |
|
|
verified: true |
|
|
- type: fire_too_close_to_city |
|
|
value: 0.9 +/- 0.2615741818902984 |
|
|
name: Fire too Close to City |
|
|
verified: true |
|
|
- type: preparing_trees |
|
|
value: 721.7666670084 +/- 737.4681856167363 |
|
|
name: Preparing Trees |
|
|
verified: true |
|
|
- type: preparing_trees_reward |
|
|
value: 721.7666670084 +/- 737.4681856167363 |
|
|
name: Preparing Trees Reward |
|
|
verified: true |
|
|
- type: water_drop |
|
|
value: 66.28333377838135 +/- 30.644495531353783 |
|
|
name: Water Drop |
|
|
verified: true |
|
|
- type: water_pickup |
|
|
value: 65.93333344459533 +/- 30.521844562150648 |
|
|
name: Water Pickup |
|
|
verified: true |
|
|
- type: cumulative_reward |
|
|
value: 996.1558359742164 +/- 875.8416918638716 |
|
|
name: Cumulative Reward |
|
|
verified: true |
|
|
--- |
|
|
|
|
|
This model serves as the baseline for the **Aerial Wildfire Suppression** environment, trained and tested on task <code>0</code> with difficulty <code>9</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br> |
|
|
|
|
|
Environment: **Aerial Wildfire Suppression**<br> |
|
|
Task: <code>0</code><br> |
|
|
Difficulty: <code>9</code><br> |
|
|
Algorithm: <code>PPO</code><br> |
|
|
Episode Length: <code>3000</code><br> |
|
|
Training <code>max_steps</code>: <code>1800000</code><br> |
|
|
Testing <code>max_steps</code>: <code>180000</code><br><br> |
|
|
|
|
|
Train & Test [Scripts](https://github.com/hivex-research/hivex)<br> |
|
|
Download the [Environment](https://github.com/hivex-research/hivex-environments) |
|
|
|
|
|
[hivex-paper]: https://arxiv.org/abs/2501.04180 |