VitEAU is a fine-tuned version of VitEAU-base-patch16-224-2025_11_06_62095-bs32_freeze. It achieves the following results on the test set:

  • Loss: 0.1528
  • F1 Micro: 0.7688
  • F1 Macro: 0.6487
  • Accuracy: 0.2470
Class F1 per class
Acropore_branched 0.8349
Acropore_digitised 0.5292
Acropore_sub_massive 0.2185
Acropore_tabular 0.9141
Algae_assembly 0.7493
Algae_drawn_up 0.4235
Algae_limestone 0.7126
Algae_sodding 0.8284
Atra/Leucospilota 0.7156
Bleached_coral 0.6784
Blurred 0.3837
Dead_coral 0.7263
Fish 0.6443
Homo_sapiens 0.7091
Human_object 0.7234
Living_coral 0.6332
Millepore 0.7222
No_acropore_encrusting 0.5904
No_acropore_foliaceous 0.7593
No_acropore_massive 0.6382
No_acropore_solitary 0.4286
No_acropore_sub_massive 0.6399
Rock 0.8640
Rubble 0.7139
Sand 0.9020
Sea_cucumber 0.7400
Sea_urchins 0.5914
Sponge 0.3936
Syringodium_isoetifolium 0.9479
Thalassodendron_ciliatum 0.9644
Useless 0.9692

Model description

VitEAU is a model built on top of VitEAU-base-patch16-224-2025_11_06_62095-bs32_freeze model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training and evaluation data

Details on the number of images for each class are given in the following table:

Class train test val Total
Acropore_branched 1480 469 459 2408
Acropore_digitised 571 156 161 888
Acropore_sub_massive 150 52 41 243
Acropore_tabular 999 292 298 1589
Algae_assembly 2554 842 842 4238
Algae_drawn_up 367 130 123 620
Algae_limestone 1651 562 559 2772
Algae_sodding 3142 994 981 5117
Atra/Leucospilota 1084 349 359 1792
Bleached_coral 219 69 72 360
Blurred 191 68 61 320
Dead_coral 1980 648 636 3264
Fish 2018 661 642 3321
Homo_sapiens 161 63 58 282
Human_object 156 55 59 270
Living_coral 397 151 153 701
Millepore 386 127 124 637
No_acropore_encrusting 442 141 142 725
No_acropore_foliaceous 204 47 35 286
No_acropore_massive 1030 341 334 1705
No_acropore_solitary 202 55 46 303
No_acropore_sub_massive 1402 428 426 2256
Rock 4481 1495 1481 7457
Rubble 3092 1015 1016 5123
Sand 5839 1945 1935 9719
Sea_cucumber 1407 437 450 2294
Sea_urchins 328 110 107 545
Sponge 267 98 105 470
Syringodium_isoetifolium 1213 392 390 1995
Thalassodendron_ciliatum 781 262 260 1303
Useless 579 193 193 965

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 53.0
  • Learning Rate: 0.001
  • Train Batch Size: 32
  • Eval Batch Size: 32
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: Yes
  • Data Augmentation: Yes

Data Augmentation

Data were augmented using the following transformations :

Train Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • RandomHorizontalFlip: probability=0.25
  • RandomVerticalFlip: probability=0.25
  • ColorJiggle: probability=0.25
  • RandomPerspective: probability=0.25
  • Normalize: probability=1.00

Val Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • Normalize: probability=1.00

Training results

Epoch Validation Loss Accuracy F1 Macro F1 Micro Learning Rate
1 0.18683579564094543 0.1990 0.7024 0.4995 0.001
2 0.17360050976276398 0.2192 0.7345 0.5567 0.001
3 0.1693931370973587 0.2241 0.7473 0.5935 0.001
4 0.16458247601985931 0.2286 0.7504 0.5903 0.001
5 0.16541151702404022 0.2241 0.7500 0.6139 0.001
6 0.1618417203426361 0.2251 0.7580 0.6095 0.001
7 0.16141444444656372 0.2401 0.7537 0.6068 0.001
8 0.16052865982055664 0.2300 0.7528 0.6108 0.001
9 0.16042891144752502 0.2265 0.7562 0.6178 0.001
10 0.15894213318824768 0.2318 0.7563 0.6113 0.001
11 0.15776531398296356 0.2366 0.7635 0.6315 0.001
12 0.15746773779392242 0.2433 0.7590 0.6083 0.001
13 0.15824778378009796 0.2387 0.7571 0.6113 0.001
14 0.1585422158241272 0.2300 0.7592 0.6085 0.001
15 0.15661202371120453 0.2335 0.7616 0.6234 0.001
16 0.15803998708724976 0.2353 0.7574 0.6194 0.001
17 0.15689316391944885 0.2321 0.7657 0.6339 0.001
18 0.15711474418640137 0.2342 0.7614 0.6361 0.001
19 0.1563279777765274 0.2363 0.7649 0.6359 0.001
20 0.15760594606399536 0.2360 0.7576 0.6212 0.001
21 0.15612910687923431 0.2356 0.7632 0.6245 0.001
22 0.15816429257392883 0.2366 0.7636 0.6285 0.001
23 0.1568743884563446 0.2325 0.7647 0.6355 0.001
24 0.15661121904850006 0.2349 0.7660 0.6260 0.001
25 0.15637530386447906 0.2377 0.7663 0.6406 0.001
26 0.15651093423366547 0.2349 0.7632 0.6326 0.001
27 0.1577683985233307 0.2339 0.7617 0.6330 0.001
28 0.15397362411022186 0.2405 0.7690 0.6386 0.0001
29 0.1538531333208084 0.2436 0.7705 0.6437 0.0001
30 0.1537177711725235 0.2440 0.7691 0.6403 0.0001
31 0.1536877304315567 0.2429 0.7698 0.6347 0.0001
32 0.15373626351356506 0.2429 0.7686 0.6358 0.0001
33 0.15358072519302368 0.2408 0.7687 0.6388 0.0001
34 0.1539021134376526 0.2426 0.7673 0.6414 0.0001
35 0.15349489450454712 0.2401 0.7704 0.6410 0.0001
36 0.15370164811611176 0.2405 0.7687 0.6409 0.0001
37 0.153493732213974 0.2412 0.7689 0.6386 0.0001
38 0.1535225659608841 0.2447 0.7688 0.6294 0.0001
39 0.15350276231765747 0.2405 0.7691 0.6387 0.0001
40 0.15352925658226013 0.2422 0.7692 0.6383 0.0001
41 0.153408482670784 0.2412 0.7696 0.6421 0.0001
42 0.15371404588222504 0.2422 0.7672 0.6392 0.0001
43 0.15338563919067383 0.2429 0.7684 0.6381 0.0001
44 0.1535147726535797 0.2405 0.7665 0.6380 0.0001
45 0.15340228378772736 0.2415 0.7701 0.6390 0.0001
46 0.15359722077846527 0.2422 0.7693 0.6362 0.0001
47 0.1536189466714859 0.2443 0.7690 0.6428 0.0001
48 0.1537674516439438 0.2426 0.7670 0.6338 0.0001
49 0.15370245277881622 0.2405 0.7689 0.6390 0.0001
50 0.15347224473953247 0.2415 0.7684 0.6382 1e-05
51 0.1534317433834076 0.2415 0.7685 0.6397 1e-05
52 0.1534072905778885 0.2422 0.7684 0.6395 1e-05
53 0.15339982509613037 0.2426 0.7687 0.6380 1e-05

Framework Versions

  • Transformers: 4.56.0.dev0
  • Pytorch: 2.6.0+cu124
  • Datasets: 3.0.2
  • Tokenizers: 0.21.0
Downloads last month
182
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support