DroneDinov2 is a fine-tuned version of DroneDinov2-large-2025_11_09_28864-bs32_freeze_probs. It achieves the following results on the test set:

  • Loss: 0.4514
  • RMSE: 0.1774
  • MAE: 0.1299
  • KL Divergence: 0.6713

Model description

DroneDinov2 is a model built on top of DroneDinov2-large-2025_11_09_28864-bs32_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training and evaluation data

Details on the estimated number of images for each class are given in the following table:

Class train test val Total
Acropore_branched 1400 331 324 2055
Acropore_digitised 1235 307 296 1838
Acropore_tabular 705 254 270 1229
Algae 5179 1709 1694 8582
Atra/Leucospilota 780 121 133 1034
Dead_coral 3796 1093 1060 5949
Fish 2822 810 786 4418
Millepore 977 324 337 1638
No_acropore_encrusting 854 417 404 1675
No_acropore_massive 3430 1180 1185 5795
No_acropore_sub_massive 3261 975 935 5171
Rock 5251 1740 1737 8728
Rubble 5152 1708 1690 8550
Sand 5285 1764 1767 8816
Sea_cucumber 1942 497 527 2966
Sea_urchins 269 131 140 540

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 70.0
  • Learning Rate: 0.001
  • Train Batch Size: 32
  • Eval Batch Size: 32
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: Yes
  • Data Augmentation: Yes

Data Augmentation

Data were augmented using the following transformations :

Train Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • RandomHorizontalFlip: probability=0.25
  • RandomVerticalFlip: probability=0.25
  • ColorJiggle: probability=0.25
  • RandomPerspective: probability=0.25
  • Normalize: probability=1.00

Val Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • Normalize: probability=1.00

Training results

Epoch Validation Loss MAE RMSE KL div Learning Rate
1 0.4741727113723755 0.1438 0.1976 0.9594 0.001
2 0.4687650501728058 0.1445 0.1943 0.5110 0.001
3 0.4747009873390198 0.1405 0.1985 1.7362 0.001
4 0.4654015004634857 0.1412 0.1913 0.7337 0.001
5 0.46701833605766296 0.1389 0.1913 0.7227 0.001
6 0.4704796075820923 0.1404 0.1953 1.5388 0.001
7 0.4628521203994751 0.1362 0.1888 1.0059 0.001
8 0.46361783146858215 0.1364 0.1896 1.3096 0.001
9 0.46851444244384766 0.1423 0.1961 1.5138 0.001
10 0.46267926692962646 0.1381 0.1889 1.1368 0.001
11 0.467467725276947 0.1340 0.1899 0.8910 0.001
12 0.46243372559547424 0.1389 0.1901 0.8928 0.001
13 0.47080767154693604 0.1429 0.1956 0.4084 0.001
14 0.46556738018989563 0.1381 0.1924 1.2270 0.001
15 0.46282485127449036 0.1412 0.1899 0.6274 0.001
16 0.4654828906059265 0.1376 0.1902 0.6048 0.001
17 0.4643498957157135 0.1381 0.1889 0.4896 0.001
18 0.46038660407066345 0.1356 0.1865 0.7752 0.001
19 0.4619322717189789 0.1382 0.1884 0.4954 0.001
20 0.4652675688266754 0.1382 0.1903 0.8658 0.001
21 0.4620676338672638 0.1366 0.1878 0.5144 0.001
22 0.4713619351387024 0.1403 0.1941 0.3566 0.001
23 0.46548378467559814 0.1363 0.1906 1.3462 0.001
24 0.46481630206108093 0.1411 0.1904 0.7657 0.001
25 0.45471280813217163 0.1321 0.1814 0.7216 0.0001
26 0.45425862073898315 0.1314 0.1810 0.7418 0.0001
27 0.45405495166778564 0.1311 0.1807 0.7892 0.0001
28 0.4557979702949524 0.1321 0.1821 0.5749 0.0001
29 0.4539044499397278 0.1311 0.1808 0.7894 0.0001
30 0.45498621463775635 0.1316 0.1816 0.7003 0.0001
31 0.4546746015548706 0.1328 0.1816 0.6652 0.0001
32 0.4551435112953186 0.1338 0.1821 0.5850 0.0001
33 0.45551541447639465 0.1339 0.1822 0.4785 0.0001
34 0.4537235498428345 0.1305 0.1804 0.8342 0.0001
35 0.4535883069038391 0.1317 0.1805 0.7388 0.0001
36 0.4543466567993164 0.1310 0.1813 1.0320 0.0001
37 0.45451438426971436 0.1324 0.1813 0.6360 0.0001
38 0.45398080348968506 0.1322 0.1809 0.6551 0.0001
39 0.45346930623054504 0.1315 0.1808 0.8529 0.0001
40 0.4533984065055847 0.1318 0.1805 0.7539 0.0001
41 0.4546375572681427 0.1326 0.1820 0.9520 0.0001
42 0.45388343930244446 0.1312 0.1805 0.7254 0.0001
43 0.4534345865249634 0.1320 0.1806 0.8160 0.0001
44 0.4536444842815399 0.1318 0.1806 0.8131 0.0001
45 0.45494702458381653 0.1313 0.1813 0.7295 0.0001
46 0.45392414927482605 0.1313 0.1809 0.8884 0.0001
47 0.4531521499156952 0.1309 0.1800 0.7509 1e-05
48 0.45328202843666077 0.1316 0.1802 0.6486 1e-05
49 0.4532022178173065 0.1312 0.1801 0.6717 1e-05
50 0.4532279968261719 0.1312 0.1801 0.6708 1e-05
51 0.4531303644180298 0.1313 0.1800 0.6896 1e-05
52 0.4529936909675598 0.1310 0.1799 0.7581 1e-05
53 0.4533153772354126 0.1316 0.1802 0.6284 1e-05
54 0.4528907537460327 0.1307 0.1798 0.7720 1e-05
55 0.453061580657959 0.1312 0.1800 0.7063 1e-05
56 0.45299893617630005 0.1311 0.1800 0.7194 1e-05
57 0.4528929889202118 0.1305 0.1798 0.8462 1e-05
58 0.4532066583633423 0.1313 0.1801 0.6873 1e-05
59 0.4533110558986664 0.1318 0.1802 0.6296 1e-05
60 0.4528135061264038 0.1312 0.1798 0.7391 1e-05
61 0.45327863097190857 0.1312 0.1801 0.6499 1e-05
62 0.45297977328300476 0.1311 0.1799 0.7146 1e-05
63 0.4528820514678955 0.1309 0.1798 0.7575 1e-05
64 0.45304232835769653 0.1313 0.1800 0.6741 1e-05
65 0.4529820680618286 0.1312 0.1799 0.7012 1e-05
66 0.4529493451118469 0.1311 0.1799 0.7273 1e-05
67 0.4529605209827423 0.1311 0.1799 0.7172 1.0000000000000002e-06
68 0.45297446846961975 0.1311 0.1799 0.7119 1.0000000000000002e-06
69 0.45297950506210327 0.1311 0.1799 0.7128 1.0000000000000002e-06
70 0.4529505968093872 0.1311 0.1799 0.7224 1.0000000000000002e-06

Framework Versions

  • Transformers: 4.56.0.dev0
  • Pytorch: 2.6.0+cu124
  • Datasets: 3.0.2
  • Tokenizers: 0.21.0
Downloads last month
211
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support