See axolotl config
axolotl version: 0.9.2
# ============= SFT PRODUCTION (4M ShareGPT) =============
base_model: giux78/zagreus-test-202000
strict: false
output_dir: ./ale_outputs/opendata-sft-prod
seed: 42
# ---- Dataset ----
datasets:
- path: /leonardo_work/EUHPC_A04_045/training/opendata-1000000
type: chat_template
field_messages: conversation
roles_to_train: ["assistant"] # loss solo sui turni assistant
train_on_eos: turn # predici <|eot_id|> a fine risposta assistant
# (opzionale ma consigliato: cache pretokenizzata tra run)
dataset_prepared_path: ./ale_outputs/dataset_cache/opendata-sft
default_system_message: "Sei un assistente utile."
# ---- Chat template (Llama-3.2 style) ----
chat_template: llama3
# ---- Training ----
sequence_len: 4096
sample_packing: true # ON per efficienza
eval_sample_packing: true
pad_to_sequence_len: true
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 1.5e-5
warmup_ratio: 0.03 # ~3% dei passi totali
weight_decay: 0.01
max_grad_norm: 1.0
# 32 GPU totali -> eff. batch = 1 * 8 * 32 = 256
micro_batch_size: 1
gradient_accumulation_steps: 8
num_epochs: 1.0 # 1 epoca completa su 4M conv
# (alternativa: usa max_steps se vuoi fermarti prima)
# ---- Precisione & memoria ----
bf16: auto
flash_attention: true
gradient_checkpointing: true
# ---- Log/Eval/Save ----
logging_steps: 20
eval_strategy: steps
eval_steps: 150 # ~7-8 eval/epoca
save_strategy: steps
save_steps: 300 # ~3 checkpoint/epoca
save_total_limit: 4
val_set_size: 10000
# (opzionale) val_set_size: 10000 # se vuoi split automatico dal dataset
# ---- FSDP multi-nodo ----
fsdp_config:
fsdp_sharding_strategy: FULL_SHARD
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_backward_prefetch_policy: BACKWARD_PRE
fsdp_state_dict_type: FULL_STATE_DICT
# ---- Token speciali (coerenti col tokenizer del base_model) ----
special_tokens:
pad_token: <|end_of_text|>
eos_token: <|end_of_text|>
ale_outputs/opendata-sft-prod
This model is a fine-tuned version of giux78/zagreus-test-202000 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.7225
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 32
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 14
- num_epochs: 1.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0020 | 1 | 3.7876 |
| 3.6507 | 0.3017 | 150 | 3.7436 |
| 3.7259 | 0.6033 | 300 | 3.7246 |
| 3.6753 | 0.9050 | 450 | 3.7225 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.5.1+cu121
- Datasets 3.5.1
- Tokenizers 0.22.1
- Downloads last month
- 10
Model tree for giux78/zagreus-test-202000-sft-8
Base model
giux78/zagreus-test-202000