g-assismoraes commited on
Commit
859fc5b
·
verified ·
1 Parent(s): 895de82

End of training

Browse files
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/mdeberta-v3-base
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: mdeberta-semeval25_narratives_fold5
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # mdeberta-semeval25_narratives_fold5
16
+
17
+ This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 4.0196
20
+ - Precision Samples: 0.3300
21
+ - Recall Samples: 0.8054
22
+ - F1 Samples: 0.4401
23
+ - Precision Macro: 0.6768
24
+ - Recall Macro: 0.5901
25
+ - F1 Macro: 0.3682
26
+ - Precision Micro: 0.2997
27
+ - Recall Micro: 0.7707
28
+ - F1 Micro: 0.4316
29
+ - Precision Weighted: 0.4440
30
+ - Recall Weighted: 0.7707
31
+ - F1 Weighted: 0.3890
32
+
33
+ ## Model description
34
+
35
+ More information needed
36
+
37
+ ## Intended uses & limitations
38
+
39
+ More information needed
40
+
41
+ ## Training and evaluation data
42
+
43
+ More information needed
44
+
45
+ ## Training procedure
46
+
47
+ ### Training hyperparameters
48
+
49
+ The following hyperparameters were used during training:
50
+ - learning_rate: 2e-05
51
+ - train_batch_size: 32
52
+ - eval_batch_size: 32
53
+ - seed: 42
54
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
55
+ - lr_scheduler_type: linear
56
+ - num_epochs: 10
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
61
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:|:------------------:|:---------------:|:-----------:|
62
+ | 5.5606 | 1.0 | 19 | 5.1746 | 0.5241 | 0.0760 | 0.0945 | 0.9639 | 0.1737 | 0.1596 | 0.2418 | 0.0827 | 0.1232 | 0.9031 | 0.0827 | 0.0450 |
63
+ | 4.8516 | 2.0 | 38 | 4.9279 | 0.2575 | 0.4866 | 0.3149 | 0.8592 | 0.3182 | 0.2199 | 0.2573 | 0.4323 | 0.3226 | 0.6527 | 0.4323 | 0.1902 |
64
+ | 5.1102 | 3.0 | 57 | 4.6329 | 0.3105 | 0.6392 | 0.3944 | 0.7662 | 0.4137 | 0.2809 | 0.3010 | 0.5827 | 0.3969 | 0.5232 | 0.5827 | 0.2907 |
65
+ | 4.5152 | 4.0 | 76 | 4.4162 | 0.2982 | 0.7060 | 0.3926 | 0.7663 | 0.4692 | 0.2933 | 0.2827 | 0.6654 | 0.3969 | 0.5256 | 0.6654 | 0.3110 |
66
+ | 4.3922 | 5.0 | 95 | 4.2955 | 0.3114 | 0.7290 | 0.4139 | 0.7003 | 0.5100 | 0.3321 | 0.2961 | 0.6880 | 0.4140 | 0.4569 | 0.6880 | 0.3560 |
67
+ | 4.0885 | 6.0 | 114 | 4.1427 | 0.3210 | 0.8169 | 0.4335 | 0.6788 | 0.5895 | 0.3665 | 0.2921 | 0.7820 | 0.4254 | 0.4415 | 0.7820 | 0.3845 |
68
+ | 3.9996 | 7.0 | 133 | 4.0937 | 0.3164 | 0.7928 | 0.4286 | 0.6762 | 0.5803 | 0.3656 | 0.2945 | 0.7594 | 0.4244 | 0.4386 | 0.7594 | 0.3814 |
69
+ | 3.9713 | 8.0 | 152 | 4.0603 | 0.3159 | 0.7847 | 0.4253 | 0.6727 | 0.5768 | 0.3623 | 0.2935 | 0.7481 | 0.4216 | 0.4375 | 0.7481 | 0.3792 |
70
+ | 4.016 | 9.0 | 171 | 4.0393 | 0.3189 | 0.7905 | 0.4300 | 0.6750 | 0.5812 | 0.3654 | 0.2978 | 0.7556 | 0.4272 | 0.4418 | 0.7556 | 0.3848 |
71
+ | 3.9635 | 10.0 | 190 | 4.0196 | 0.3300 | 0.8054 | 0.4401 | 0.6768 | 0.5901 | 0.3682 | 0.2997 | 0.7707 | 0.4316 | 0.4440 | 0.7707 | 0.3890 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.46.0
77
+ - Pytorch 2.3.1
78
+ - Datasets 2.21.0
79
+ - Tokenizers 0.20.1
runs/Oct27_16-04-57_icuff-Z790-UD/events.out.tfevents.1730055898.icuff-Z790-UD.501800.8 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ba8b66c47f79aa31978c2b9fc13fb45312a2250f9ad1583dc2fba5856988748c
3
- size 18549
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:429e11a82be0c7299a0fc6a7b1424cb2b7b77ef8fb3106ee5b815863e496f37a
3
+ size 19857