mdeberta-semeval25_narratives_fold5
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.0196
- Precision Samples: 0.3300
- Recall Samples: 0.8054
- F1 Samples: 0.4401
- Precision Macro: 0.6768
- Recall Macro: 0.5901
- F1 Macro: 0.3682
- Precision Micro: 0.2997
- Recall Micro: 0.7707
- F1 Micro: 0.4316
- Precision Weighted: 0.4440
- Recall Weighted: 0.7707
- F1 Weighted: 0.3890
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5.5606 | 1.0 | 19 | 5.1746 | 0.5241 | 0.0760 | 0.0945 | 0.9639 | 0.1737 | 0.1596 | 0.2418 | 0.0827 | 0.1232 | 0.9031 | 0.0827 | 0.0450 |
| 4.8516 | 2.0 | 38 | 4.9279 | 0.2575 | 0.4866 | 0.3149 | 0.8592 | 0.3182 | 0.2199 | 0.2573 | 0.4323 | 0.3226 | 0.6527 | 0.4323 | 0.1902 |
| 5.1102 | 3.0 | 57 | 4.6329 | 0.3105 | 0.6392 | 0.3944 | 0.7662 | 0.4137 | 0.2809 | 0.3010 | 0.5827 | 0.3969 | 0.5232 | 0.5827 | 0.2907 |
| 4.5152 | 4.0 | 76 | 4.4162 | 0.2982 | 0.7060 | 0.3926 | 0.7663 | 0.4692 | 0.2933 | 0.2827 | 0.6654 | 0.3969 | 0.5256 | 0.6654 | 0.3110 |
| 4.3922 | 5.0 | 95 | 4.2955 | 0.3114 | 0.7290 | 0.4139 | 0.7003 | 0.5100 | 0.3321 | 0.2961 | 0.6880 | 0.4140 | 0.4569 | 0.6880 | 0.3560 |
| 4.0885 | 6.0 | 114 | 4.1427 | 0.3210 | 0.8169 | 0.4335 | 0.6788 | 0.5895 | 0.3665 | 0.2921 | 0.7820 | 0.4254 | 0.4415 | 0.7820 | 0.3845 |
| 3.9996 | 7.0 | 133 | 4.0937 | 0.3164 | 0.7928 | 0.4286 | 0.6762 | 0.5803 | 0.3656 | 0.2945 | 0.7594 | 0.4244 | 0.4386 | 0.7594 | 0.3814 |
| 3.9713 | 8.0 | 152 | 4.0603 | 0.3159 | 0.7847 | 0.4253 | 0.6727 | 0.5768 | 0.3623 | 0.2935 | 0.7481 | 0.4216 | 0.4375 | 0.7481 | 0.3792 |
| 4.016 | 9.0 | 171 | 4.0393 | 0.3189 | 0.7905 | 0.4300 | 0.6750 | 0.5812 | 0.3654 | 0.2978 | 0.7556 | 0.4272 | 0.4418 | 0.7556 | 0.3848 |
| 3.9635 | 10.0 | 190 | 4.0196 | 0.3300 | 0.8054 | 0.4401 | 0.6768 | 0.5901 | 0.3682 | 0.2997 | 0.7707 | 0.4316 | 0.4440 | 0.7707 | 0.3890 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for g-assismoraes/mdeberta-semeval25_narratives_fold5
Base model
microsoft/mdeberta-v3-base