mdeberta-semeval25_narratives09_fold1
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.1440
- Precision Samples: 0.3489
- Recall Samples: 0.7666
- F1 Samples: 0.4484
- Precision Macro: 0.6713
- Recall Macro: 0.4701
- F1 Macro: 0.2642
- Precision Micro: 0.3133
- Recall Micro: 0.7518
- F1 Micro: 0.4423
- Precision Weighted: 0.4454
- Recall Weighted: 0.7518
- F1 Weighted: 0.3929
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5.3976 | 1.0 | 19 | 5.3094 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0476 | 0.0476 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
| 5.0729 | 2.0 | 38 | 5.0051 | 0.2991 | 0.4812 | 0.3465 | 0.8683 | 0.2245 | 0.1355 | 0.3056 | 0.4496 | 0.3639 | 0.6682 | 0.4496 | 0.2244 |
| 4.799 | 3.0 | 57 | 4.7268 | 0.3634 | 0.5035 | 0.3759 | 0.8348 | 0.2364 | 0.1574 | 0.3291 | 0.4640 | 0.3851 | 0.6206 | 0.4640 | 0.2617 |
| 4.4077 | 4.0 | 76 | 4.5072 | 0.3846 | 0.6225 | 0.4435 | 0.7933 | 0.3190 | 0.2043 | 0.3383 | 0.5755 | 0.4261 | 0.5591 | 0.5755 | 0.3232 |
| 4.1905 | 5.0 | 95 | 4.3919 | 0.4006 | 0.6444 | 0.4575 | 0.7484 | 0.3320 | 0.2140 | 0.3395 | 0.5935 | 0.4319 | 0.5242 | 0.5935 | 0.3411 |
| 4.1939 | 6.0 | 114 | 4.2724 | 0.3817 | 0.7296 | 0.4634 | 0.7094 | 0.4205 | 0.2478 | 0.3229 | 0.7050 | 0.4429 | 0.4663 | 0.7050 | 0.3791 |
| 3.9286 | 7.0 | 133 | 4.2600 | 0.3753 | 0.7336 | 0.4620 | 0.6853 | 0.4257 | 0.2568 | 0.3311 | 0.7050 | 0.4506 | 0.4556 | 0.7050 | 0.3882 |
| 3.8896 | 8.0 | 152 | 4.1871 | 0.3528 | 0.7581 | 0.4505 | 0.6713 | 0.4559 | 0.2625 | 0.3188 | 0.7374 | 0.4452 | 0.4462 | 0.7374 | 0.3929 |
| 3.993 | 9.0 | 171 | 4.1598 | 0.3525 | 0.7629 | 0.4503 | 0.6712 | 0.4645 | 0.2639 | 0.3170 | 0.7446 | 0.4447 | 0.4443 | 0.7446 | 0.3920 |
| 4.1424 | 10.0 | 190 | 4.1440 | 0.3489 | 0.7666 | 0.4484 | 0.6713 | 0.4701 | 0.2642 | 0.3133 | 0.7518 | 0.4423 | 0.4454 | 0.7518 | 0.3929 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 7
Model tree for g-assismoraes/mdeberta-semeval25_narratives09_fold1
Base model
microsoft/mdeberta-v3-base