Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_resume_from_checkpoints: true
base_model: facebook/opt-125m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 6
datasets:
- data_files:
  - 818f8460304dc8f3_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/818f8460304dc8f3_train_data.json
  type:
    field_input: hypothesis
    field_instruction: premise
    field_output: augmented_hypothesis
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/18092189-46f9-4027-aa36-175d1e605e4a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 24
mlflow_experiment_name: /tmp/818f8460304dc8f3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 256
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: af50a6d4-247f-4e76-817b-1cfd6dd7131d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: af50a6d4-247f-4e76-817b-1cfd6dd7131d
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

18092189-46f9-4027-aa36-175d1e605e4a

This model is a fine-tuned version of facebook/opt-125m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1241

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 96
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
12.7141 0.0005 1 3.1690
1.3992 0.0960 200 0.3349
1.0472 0.1921 400 0.2430
0.883 0.2881 600 0.2006
0.7357 0.3842 800 0.1706
0.7221 0.4802 1000 0.1574
0.7825 0.5763 1200 0.1546
0.5444 0.6723 1400 0.1439
0.6198 0.7684 1600 0.1449
0.5838 0.8644 1800 0.1378
0.5814 0.9605 2000 0.1363
0.552 1.0565 2200 0.1346
0.5699 1.1526 2400 0.1337
0.5114 1.2486 2600 0.1359
0.5164 1.3447 2800 0.1310
0.4851 1.4407 3000 0.1314
0.4927 1.5368 3200 0.1320
0.485 1.6328 3400 0.1287
0.5204 1.7289 3600 0.1270
0.5643 1.8249 3800 0.1277
0.525 1.9210 4000 0.1275
0.4682 2.0170 4200 0.1264
0.5078 2.1131 4400 0.1259
0.5088 2.2091 4600 0.1257
0.5096 2.3052 4800 0.1250
0.5158 2.4012 5000 0.1252
0.5353 2.4973 5200 0.1241
0.5068 2.5933 5400 0.1242
0.5512 2.6894 5600 0.1241
0.472 2.7854 5800 0.1242
0.4644 2.8815 6000 0.1242
0.47 2.9775 6200 0.1241

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for error577/18092189-46f9-4027-aa36-175d1e605e4a

Base model

facebook/opt-125m
Adapter
(317)
this model

Evaluation results