small-prompt-compression

This model is a fine-tuned version of Falconsai/text_summarization on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1671
  • Rouge1: 0.8011
  • Rouge2: 0.6232
  • Rougel: 0.7622
  • Rougelsum: 0.7623
  • Comp Ratio Mean: 0.8625
  • Comp Ratio P90: 1.0
  • Pct Violations: 0.0083

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.1

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Comp Ratio Mean Comp Ratio P90 Pct Violations
2.6954 1.0 4523 2.2681 0.7873 0.6009 0.7454 0.7455 0.8729 1.0 0.0183
2.3427 2.0 9046 2.1862 0.7959 0.6164 0.7562 0.7564 0.8672 1.0 0.0102
2.2822 3.0 13569 2.1671 0.8011 0.6232 0.7622 0.7623 0.8625 1.0 0.0083

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
26
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dotslashderek/small-prompt-compression

Finetuned
(24)
this model