Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 14 new columns ({'country', 'avg_duration', 'avg_engagement_per_1k', 'median_er', 'total_videos', 'top_hashtag_views', 'avg_velocity', 'platform', 'p95_views', 'avg_share_rate', 'total_views', 'avg_comment_ratio', 'top_hashtag', 'avg_save_rate'}) and 2 missing columns ({'column', 'description'}).

This happened while the csv dataset builder was generating data using

hf://datasets/tarekmasryo/youtube-tiktok-trends-2025/data/country_platform_summary_2025.csv (at revision 2f6c1d9a398f14cdda91124c28bcb4fadd8c6c4f)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              country: string
              platform: string
              total_videos: int64
              total_views: int64
              median_er: double
              p95_views: double
              avg_duration: double
              avg_velocity: double
              avg_comment_ratio: double
              avg_share_rate: double
              avg_save_rate: double
              avg_engagement_per_1k: double
              top_hashtag: string
              top_hashtag_views: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2005
              to
              {'column': Value('string'), 'description': Value('string')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1455, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1054, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 14 new columns ({'country', 'avg_duration', 'avg_engagement_per_1k', 'median_er', 'total_videos', 'top_hashtag_views', 'avg_velocity', 'platform', 'p95_views', 'avg_share_rate', 'total_views', 'avg_comment_ratio', 'top_hashtag', 'avg_save_rate'}) and 2 missing columns ({'column', 'description'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/tarekmasryo/youtube-tiktok-trends-2025/data/country_platform_summary_2025.csv (at revision 2f6c1d9a398f14cdda91124c28bcb4fadd8c6c4f)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

column
string
description
string
platform
Platform (TikTok/YouTube)
country
Country ISO-2 code
region
Region macro label (if available)
language
Primary language inferred from country (fallback to 'en')
category
Video category (if available)
hashtag
Primary hashtag aligned with genre
title_keywords
Short realistic title-like keywords
author_handle
Creator handle/channel (brand-like, synthetic)
sound_type
Sound type (if present)
music_track
Music track (if present)
week_of_year
ISO week number (1–53)
duration_sec
Shorts-style duration in seconds (TikTok ~5–75, YouTube ~5–90)
views
Total views
likes
Likes count
comments
Comments count
shares
Shares count
saves
Saves count
engagement_rate
(likes+comments+shares+saves) / views
trend_label
No description available
source_hint
No description available
notes
No description available
device_type
Android/iOS/Web
upload_hour
Hour of day video published (0–23)
genre
Canonical content genre
trend_duration_days
Days the video remained trending (synthetic)
trend_type
Short (≀7), Medium (8–21), Evergreen (β‰₯22)
engagement_velocity
views / trend_duration_days
dislikes
Dislikes (synthetic, platform-aware)
comment_ratio
comments / views
share_rate
shares / views
save_rate
saves / views
like_dislike_ratio
likes / (dislikes+1)
publish_dayofweek
Day of week of publish_date
publish_period
Part of day bucket (Morning/Afternoon/Evening/Night)
event_season
Seasonal/contextual event (Ramadan, SummerBreak, BackToSchool, HolidaySeason, None)
tags
YouTube-like comma-separated tags aligned with genre
sample_comments
One short synthetic multilingual comment
creator_avg_views
Avg views per video for the creator (across dataset rows)
creator_tier
Creator tier based on avg views: Micro / Mid / Macro / Star
season
Climatological season (Winter/Spring/Summer/Fall)
publish_date_approx
ISO date reconstructed/approximated within 2025 (clipped to 2025-09-12)
year_month
Publish year-month for time-series aggregation
title
Short realistic video title (synthetic)
title_length
Character count of title
has_emoji
Whether title contains emoji (1/0)
avg_watch_time_sec
Estimated average watch time (seconds)
completion_rate
avg_watch_time_sec / duration_sec
device_brand
If mobile: device brand (iPhone, Samsung, Huawei, Xiaomi, Oppo, Vivo, Pixel, Other); Web β†’ Desktop
traffic_source
Coarse discovery source (TikTok: ForYou/Following/Search/External; YouTube: Home/Suggested/Search/External)
is_weekend
Publish on Fri/Sat/Sun = 1
row_id
Deterministic MD5 over [platform, country, author_handle, title, publish_date_approx, duration_sec] (primary key)
engagement_total
likes + comments + shares + saves
like_rate
likes / views
dislike_rate
dislikes / views
engagement_per_1k
Total engagements per 1,000 views
engagement_like_rate
Likes divided by Views; NaN when Views <= 0
engagement_comment_rate
Comments divided by Views; NaN when Views <= 0
engagement_share_rate
Shares divided by Views; NaN when Views <= 0
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.

🎬 YouTube Shorts & TikTok Trends 2025

Author: Tarek Masryo Β· Kaggle
License: CC0 (Public Domain) β€” Free for open research & education


πŸ“Œ Dataset Summary

A comprehensive snapshot dataset capturing short-form video activity on YouTube Shorts & TikTok in 2025 (Jan–Aug).

  • 🌍 Coverage: 100+ countries, 2 major platforms
  • πŸ“‚ Package: raw video-level file, ML-ready version, monthly summaries, country rollups, top creators, top hashtags, and a data dictionary
  • ⚑ Features: standardized schemas, deduplicated IDs, engagement metrics (views, likes, comments, shares, saves, completion rate)

πŸ’‘ For machine learning tasks, use the ML-ready file (youtube_shorts_tiktok_trends_2025_ml.csv).
⚠️ trend_label is a snapshot approximation (not full time-series). It’s a challenging ML target (β‰ˆ25–35% baseline accuracy).


πŸ—‚ Dataset Structure

Main Files

  • youtube_shorts_tiktok_trends_2025.csv β†’ 48,079 rows Γ— 58 columns (raw video-level data: platform, country, region, language, category, hashtags, author_handle, sound/music metadata, full engagement metrics).
  • youtube_shorts_tiktok_trends_2025_ml.csv β†’ 50,000 rows Γ— 32 columns (ML-ready version: cleaned & feature-engineered for faster modeling).

Companion Files

  • monthly_trends_2025.csv β†’ 480 rows Γ— 8 cols (video counts, views, avg engagement, velocity)
  • country_platform_summary_2025.csv β†’ 60 rows Γ— 14 cols (totals, medians, percentiles)
  • top_creators_impact_2025.csv β†’ 1,000 rows Γ— 20 cols (creator stats, cumulative engagement, avg rates)
  • top_hashtags_2025.csv β†’ 82 rows Γ— 18 cols (hashtag usage, reach, ratios, velocity)
  • DATA_DICTIONARY.csv β†’ 58 rows (column names, descriptions, types)

πŸš€ How to Use

from datasets import load_dataset
import pandas as pd

# Load dataset from HuggingFace
ds = load_dataset("TarekMasryo/YouTube-Shorts-TikTok-Trends-2025")
df = ds["train"].to_pandas()
print(df.head())

# Example: work with companion file
hashtags = pd.read_csv("top_hashtags_2025.csv")
print(hashtags.sort_values("views", ascending=False).head(10))
Downloads last month
319