Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 23 new columns ({'shot_direction', 'ball_result', 'batting_style', 'batsman_runs', 'bye_runs', 'batsman', 'match_id', 'bowling_team', 'player_dismissed', 'noball_runs', 'dismissal_kind', 'ball_over', 'fielder', 'non_striker', 'bowling_style', 'extra_runs', 'batting_team', 'bowling_arm', 'legbye_runs', 'wide_runs', 'inning', 'total_runs', 'bowler'}) and 27 missing columns ({'win_by_runs', 'total_ball_bowled', 'toss_decision', 'winner', 'dls_applied', 'player_of_the_match', 'team_2', 'id', 'over_balls', 'team_1_overs_played', 'team_2_runs_from_extra', 'team_2_overs_played', 'team_1_runs', 'season ', 'team_1_wickets', 'city', 'win_by_wickets', 'toss_winner', 'date', 'super_over', 'team_1_runs_from_extra', 'extra_balls', 'result', 'team_1', 'team_2_runs', 'venue', 'team_2_wickets'}).

This happened while the csv dataset builder was generating data using

hf://datasets/samarpanrai/Nepal-Premier-League-ball-by-ball/NPL_final.csv (at revision 53ae5e06042e2a4912f32c008f4783f11b0e81a6)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              match_id: int64
              inning: int64
              batting_team: string
              bowling_team: string
              ball_over: double
              ball_result: string
              bowler: string
              bowling_arm: string
              bowling_style: string
              batsman: string
              batting_style: string
              non_striker: string
              shot_direction: string
              player_dismissed: string
              dismissal_kind: string
              fielder: string
              batsman_runs: int64
              wide_runs: int64
              bye_runs: int64
              legbye_runs: int64
              noball_runs: int64
              extra_runs: int64
              total_runs: int64
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 3018
              to
              {'id': Value('int64'), 'season ': Value('int64'), 'date': Value('string'), 'venue': Value('string'), 'city': Value('string'), 'team_1': Value('string'), 'team_2': Value('string'), 'toss_winner': Value('string'), 'toss_decision': Value('string'), 'result': Value('string'), 'dls_applied': Value('int64'), 'super_over': Value('int64'), 'winner': Value('string'), 'team_1_runs': Value('int64'), 'team_2_runs': Value('int64'), 'team_1_overs_played': Value('float64'), 'team_2_overs_played': Value('float64'), 'team_1_wickets': Value('int64'), 'team_2_wickets': Value('int64'), 'team_1_runs_from_extra': Value('int64'), 'team_2_runs_from_extra': Value('int64'), 'win_by_runs': Value('int64'), 'win_by_wickets': Value('int64'), 'player_of_the_match': Value('string'), 'over_balls': Value('int64'), 'extra_balls': Value('int64'), 'total_ball_bowled': Value('int64')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1455, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1054, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/builder.py", line 1833, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 23 new columns ({'shot_direction', 'ball_result', 'batting_style', 'batsman_runs', 'bye_runs', 'batsman', 'match_id', 'bowling_team', 'player_dismissed', 'noball_runs', 'dismissal_kind', 'ball_over', 'fielder', 'non_striker', 'bowling_style', 'extra_runs', 'batting_team', 'bowling_arm', 'legbye_runs', 'wide_runs', 'inning', 'total_runs', 'bowler'}) and 27 missing columns ({'win_by_runs', 'total_ball_bowled', 'toss_decision', 'winner', 'dls_applied', 'player_of_the_match', 'team_2', 'id', 'over_balls', 'team_1_overs_played', 'team_2_runs_from_extra', 'team_2_overs_played', 'team_1_runs', 'season ', 'team_1_wickets', 'city', 'win_by_wickets', 'toss_winner', 'date', 'super_over', 'team_1_runs_from_extra', 'extra_balls', 'result', 'team_1', 'team_2_runs', 'venue', 'team_2_wickets'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/samarpanrai/Nepal-Premier-League-ball-by-ball/NPL_final.csv (at revision 53ae5e06042e2a4912f32c008f4783f11b0e81a6)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

id
int64
season
int64
date
string
venue
string
city
string
team_1
string
team_2
string
toss_winner
string
toss_decision
string
result
string
dls_applied
int64
super_over
int64
winner
string
team_1_runs
int64
team_2_runs
int64
team_1_overs_played
float64
team_2_overs_played
float64
team_1_wickets
int64
team_2_wickets
int64
team_1_runs_from_extra
int64
team_2_runs_from_extra
int64
win_by_runs
int64
win_by_wickets
int64
player_of_the_match
string
over_balls
int64
extra_balls
int64
total_ball_bowled
int64
1
2,024
2024-11-30
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Biratnagar Kings
Janakpur Bolts
Janakpur Bolts
field
normal
0
0
Janakpur Bolts
127
131
19
15.3
10
2
15
22
0
8
Lahiru Milantha
207
17
224
2
2,024
2024-12-02
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Kathmandu Gurkhas
Chitwan Rhinos
Chitwan Rhinos
field
normal
0
0
Chitwan Rhinos
111
114
20
17.1
9
5
8
12
0
5
Sohail Tanvir
223
5
228
3
2,024
2024-12-02
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Karnali Yaks
Janakpur Bolts
Karnali Yaks
bat
normal
0
0
Janakpur Bolts
141
142
20
15.1
7
2
8
4
0
8
Anil Sah
211
11
222
4
2,024
2024-12-03
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Sudurpaschim Royals
Biratnagar Kings
Biratnagar Kings
field
normal
0
0
Sudurpaschim Royals
182
92
20
16.1
7
10
7
7
90
0
Dipendra Singh Airee
217
9
226
5
2,024
2024-12-03
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Chitwan Rhinos
Pokhara Avengers
Pokhara Avengers
field
normal
0
0
Chitwan Rhinos
161
74
20
13.2
7
10
5
11
87
0
Rijan Dhakal
200
9
209
6
2,024
2024-12-04
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Karnali Yaks
Kathmandu Gurkhas
Kathmandu Gurkhas
field
normal
0
0
Kathmandu Gurkhas
149
153
20
19.3
5
7
13
7
0
3
Sumit Maharjan
237
12
249
7
2,024
2024-12-04
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Lumbini Lions
Biratnagar Kings
Biratnagar Kings
field
normal
0
0
Biratnagar Kings
191
193
20
19.5
7
8
29
20
0
2
Lokesh Bam
239
16
255
8
2,024
2024-12-05
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Pokhara Avengers
Janakpur Bolts
Janakpur Bolts
field
normal
0
0
Janakpur Bolts
138
143
20
17.1
7
3
8
11
0
7
James Neesham
223
10
233
9
2,024
2024-12-05
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Sudurpaschim Royals
Kathmandu Gurkhas
Kathmandu Gurkhas
field
normal
0
0
Sudurpaschim Royals
167
94
20
15.5
6
10
10
2
73
0
Naren Saud
215
7
222
10
2,024
2024-12-06
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Chitwan Rhinos
Karnali Yaks
Karnali Yaks
field
normal
0
0
Karnali Yaks
130
132
20
19.5
7
4
5
9
0
6
Bipin Sharma
239
9
248
11
2,024
2024-12-06
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Lumbini Lions
Pokhara Avengers
Lumbini Lions
bat
normal
0
0
Pokhara Avengers
170
176
20
16.5
4
0
10
11
0
10
Andries Gous
221
6
227
12
2,024
2024-12-07
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Sudurpaschim Royals
Lumbini Lions
Lumbini Lions
field
normal
0
0
Sudurpaschim Royals
187
142
20
20
4
9
7
8
45
0
Saif Zaib
240
9
249
13
2,024
2024-12-07
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Karnali Yaks
Biratnagar Kings
Biratnagar Kings
field
normal
0
0
Karnali Yaks
133
126
20
20
10
8
5
9
7
0
William Bosisto
240
6
246
14
2,024
2024-12-08
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Janakpur Bolts
Lumbini Lions
Lumbini Lions
field
normal
0
0
Janakpur Bolts
136
135
20
20
9
8
15
17
1
0
Harsh Thaker
240
9
249
15
2,024
2024-12-08
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Chitwan Rhinos
Sudurpaschim Royals
Chitwan Rhinos
bat
normal
0
0
Chitwan Rhinos
164
131
20
18.2
5
10
16
7
33
0
Hassan Eisakhil
230
10
240
16
2,024
2024-12-10
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Lumbini Lions
Chitwan Rhinos
Chitwan Rhinos
field
normal
0
0
Lumbini Lions
167
134
20
20
6
8
5
6
33
0
Rohit Paudel
240
5
245
17
2,024
2024-12-10
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Pokhara Avengers
Karnali Yaks
Pokhara Avengers
bat
normal
0
0
Karnali Yaks
103
106
16.3
15
10
3
5
6
0
7
William Bosisto
189
2
191
18
2,024
2024-12-11
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Sudurpaschim Royals
Janakpur Bolts
Janakpur Bolts
field
normal
0
0
Sudurpaschim Royals
123
51
20
12.1
9
10
13
13
72
0
Ishan Pandey
193
10
203
19
2,024
2024-12-11
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Kathmandu Gurkhas
Lumbini Lions
Kathmandu Gurkhas
bat
normal
0
0
Kathmandu Gurkhas
103
85
19.2
19.2
10
10
3
11
18
0
Karan KC
232
5
237
20
2,024
2024-12-12
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Biratnagar Kings
Pokhara Avengers
Biratnagar Kings
bat
normal
0
1
Pokhara Avengers
139
139
20
20
7
6
4
7
0
0
Raymon Reifer
240
4
244
21
2,024
2024-12-12
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Kathmandu Gurkhas
Janakpur Bolts
Kathmandu Gurkhas
bat
normal
0
0
Janakpur Bolts
101
105
19.3
15.5
10
5
11
5
0
5
Lalit Rajbanshi
212
5
217
22
2,024
2024-12-13
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Karnali Yaks
Lumbini Lions
Lumbini Lions
field
normal
0
0
Karnali Yaks
128
123
20
20
8
7
7
0
5
0
William Bosisto
240
2
242
23
2,024
2024-12-13
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Biratnagar Kings
Chitwan Rhinos
Biratnagar Kings
bat
normal
0
0
Biratnagar Kings
181
130
20
20
5
6
23
6
51
0
Basir Ahamad
240
12
252
24
2,024
2024-12-14
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Pokhara Avengers
Kathmandu Gurkhas
Kathmandu Gurkhas
field
normal
0
0
Kathmandu Gurkhas
138
142
20
14.1
8
4
11
1
0
6
Stephen Eskinazi
205
4
209
25
2,024
2024-12-14
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Chitwan Rhinos
Janakpur Bolts
Chitwan Rhinos
bat
normal
0
0
Chitwan Rhinos
180
148
20
18
5
10
12
8
32
0
Kushal Malla
228
12
240
26
2,024
2024-12-15
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Biratnagar Kings
Kathmandu Gurkhas
Kathmandu Gurkhas
field
normal
0
0
Kathmandu Gurkhas
117
120
19.5
18.1
10
9
12
13
0
1
Dipesh Kandel
228
10
238
27
2,024
2024-12-15
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Sudurpaschim Royals
Pokhara Avengers
Pokhara Avengers
field
normal
0
0
Sudurpaschim Royals
153
148
20
19.4
7
10
14
15
5
0
Scott Kuggeleijn
238
11
249
28
2,024
2024-12-16
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Karnali Yaks
Sudurpaschim Royals
Sudurpaschim Royals
field
normal
0
0
Sudurpaschim Royals
101
105
20
15.2
10
4
8
7
0
6
Dipendra Singh Airee
212
10
222
29
2,024
2024-12-18
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Karnali Yaks
Chitwan Rhinos
Chitwan Rhinos
field
normal
0
0
Karnali Yaks
175
154
20
20
6
9
7
7
21
0
Chadwick Walton
240
6
246
30
2,024
2024-12-18
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Janakpur Bolts
Sudurpaschim Royals
Janakpur Bolts
bat
normal
0
0
Sudurpaschim Royals
139
141
20
18.3
9
2
10
6
0
8
Binod Bhandari
231
8
239
31
2,024
2024-12-19
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Karnali Yaks
Janakpur Bolts
Janakpur Bolts
field
normal
0
0
Janakpur Bolts
118
119
20
19
9
8
8
4
0
2
James Neesham
234
6
240
32
2,024
2024-12-21
Tribhuvan University International Cricket Ground, Kirtipur
Kathmandu
Sudurpaschim Royals
Janakpur Bolts
Sudurpaschim Royals
bat
normal
0
0
Janakpur Bolts
184
185
20
19.2
9
5
8
18
0
5
Lahiru Milantha
236
8
244
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.

🏏 Nepal Premier League Dataset

This dataset provides structured data from the Nepal Premier League (NPL).

It includes two configurations:

  • ball_by_ball β€” Every ball delivered in NPL matches, with batsman, bowler, runs, extras, and dismissals.
  • match_summary β€” Per-match summaries including teams, venue, toss details, scores, and results.

🧠 Usage

from datasets import load_dataset

# Ball-by-ball data
ball_data = load_dataset("samarpanrai/Nepal-Premier-League-ball-by-ball", "ball_by_ball")

# Match summary data
match_data = load_dataset("samarpanrai/Nepal-Premier-League-ball-by-ball", "match_summary")

Files

  • NPL_matches.csv: Data for each match in the Nepal Premier League, including information such as:

    • match_id
    • date
    • teams
    • match_result
    • total_runs, wickets, and other match statistics
  • NPL_final.csv: A more granular dataset that includes ball-by-ball data for every match, including:

    • match_id
    • ball_over
    • bowler
    • batsman
    • batsman_runs
    • dismissal_kind
    • shot_direction, and other data

Purpose

The datasets provide insights into the performance and outcomes of the Nepal Premier League (NPL) matches. The ball-by-ball data allows for in-depth analysis and exploration of the matches, while the match-level dataset offers an overview of each game played in the league.

Usage

You can use these datasets for:

  • Statistical analysis of player performance
  • Match outcome prediction models
  • Visualizing trends and patterns across multiple seasons
  • Research and analysis related to cricket match dynamics

License

The datasets are provided for research, analysis, and educational purposes. Please attribute the source appropriately when using the data.


For any questions or issues, please contact [[email protected]].

Downloads last month
20