|
|
--- |
|
|
license: mit |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: train |
|
|
path: data/train-* |
|
|
- split: test |
|
|
path: data/test-* |
|
|
dataset_info: |
|
|
features: |
|
|
- name: images |
|
|
sequence: string |
|
|
- name: problem |
|
|
dtype: string |
|
|
- name: answer |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 477238 |
|
|
num_examples: 3000 |
|
|
- name: test |
|
|
num_bytes: 93920 |
|
|
num_examples: 600 |
|
|
download_size: 287256 |
|
|
dataset_size: 571158 |
|
|
language: |
|
|
- en |
|
|
size_categories: |
|
|
- 1K<n<10K |
|
|
--- |
|
|
|
|
|
Please download [images.tar](images.tar) to your local disk and use `tar -xvf images.tar` to unarchive the image files. |
|
|
|
|
|
This dataset was mixed with [hiyouga/geometry3k](https://huggingface.co/datasets/hiyouga/geometry3k) and [hiyouga/math12k](https://huggingface.co/datasets/hiyouga/math12k) using the following script. |
|
|
|
|
|
```python |
|
|
import os |
|
|
from functools import partial |
|
|
|
|
|
from datasets import DatasetDict, Features, Sequence, Value, concatenate_datasets, load_dataset |
|
|
|
|
|
|
|
|
def process_sample(example: dict, index: int, split: str): |
|
|
if "images" in example: |
|
|
image = example["images"][0] |
|
|
image_path = os.path.join("images", split, f"{index}.png") |
|
|
image.save(image_path) |
|
|
images = [image_path] |
|
|
else: |
|
|
images = [] |
|
|
|
|
|
return { |
|
|
"images": images, |
|
|
"problem": example["problem"], |
|
|
"answer": example["answer"], |
|
|
} |
|
|
|
|
|
|
|
|
def main(): |
|
|
geo3k = load_dataset("hiyouga/geometry3k") |
|
|
math12k = load_dataset("hiyouga/math12k") |
|
|
os.makedirs(os.path.join("images", "train"), exist_ok=True) |
|
|
os.makedirs(os.path.join("images", "test"), exist_ok=True) |
|
|
map_kwargs = { |
|
|
"with_indices": True, |
|
|
"num_proc": 64, |
|
|
"features": Features( |
|
|
{"images": Sequence(Value("string")), "problem": Value("string"), "answer": Value("string")} |
|
|
), |
|
|
} |
|
|
geo3k_train = geo3k["train"].select(range(1500)).map(partial(process_sample, split="train"), **map_kwargs) |
|
|
geo3k_test = geo3k["test"].select(range(300)).map(partial(process_sample, split="test"), **map_kwargs) |
|
|
math12k_train = math12k["train"].select(range(1500)).map(partial(process_sample, split="train"), **map_kwargs) |
|
|
math12k_test = math12k["test"].select(range(300)).map(partial(process_sample, split="test"), **map_kwargs) |
|
|
trainset = concatenate_datasets([geo3k_train, math12k_train]) |
|
|
testset = concatenate_datasets([geo3k_test, math12k_test]) |
|
|
dataset = DatasetDict({"train": trainset, "test": testset}) |
|
|
dataset.push_to_hub("hiyouga/rl-mixed-dataset") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
``` |
|
|
|