File size: 6,853 Bytes
0660f29
 
 
 
 
 
 
 
 
 
 
7080cb5
0660f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db1bd0
0660f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db1bd0
 
 
0660f29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
license: apache-2.0
task_categories:
- text-classification
- zero-shot-classification
language:
- en
tags:
- star_trek
- qwen
- Qwen3Guard
pretty_name: Star Trek Classification
size_categories:
- n<1K
---

# Star Trek Guard Dataset

A binary classification dataset for training guard models to identify whether user inputs are related to Star Trek or not. This dataset is designed for fine-tuning language models to act as content filters, ensuring that only Star Trek-related queries are processed by specialized Star Trek AI assistants.

## Dataset Description

The Star Trek Guard Dataset contains **5,000 examples** of questions and statements labeled as either:
- **`related`**: Inputs that are relevant to Star Trek (characters, ships, episodes, concepts, etc.)
- **`not_related`**: Inputs that are not related to Star Trek (general knowledge, other topics, etc.)

### Dataset Structure

Each example in the dataset follows this JSON format:

```json
{"input": "What is the role of James T. Kirk in Star Trek?", "label": "related"}
{"input": "What is the capital of France?", "label": "not_related"}
```

### Fields

- **`input`** (string): The text input/question to be classified
- **`label`** (string): The classification label, either `"related"` or `"not_related"`

## Dataset Statistics

- **Total Examples**: 5,000
- **Format**: JSONL (JSON Lines)
- **Task**: Binary Text Classification
- **Labels**: 
  - `related`: Star Trek-related content
  - `not_related`: Non-Star Trek content

## Usage

### Loading the Dataset

```python
from datasets import load_dataset

# Load from Hugging Face Hub
dataset = load_dataset("geoffmunn/star-trek-guard-dataset")

# Or load from local JSONL file
dataset = load_dataset("json", data_files="star_trek_guard_dataset.jsonl")
```

### Example Usage in Training

This dataset is designed to be used with the Hugging Face Transformers library for fine-tuning sequence classification models. Here's a basic example:

```python
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification

# Load dataset
dataset = load_dataset("json", data_files="star_trek_guard_dataset.jsonl")["train"]

# Map labels to IDs
LABEL2ID = {"not_related": 0, "related": 1}
ID2LABEL = {0: "not_related", 1: "related"}

dataset = dataset.map(lambda x: {"labels": LABEL2ID[x["label"]]})

# Split into train/test
dataset = dataset.train_test_split(test_size=0.1)

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-4B", trust_remote_code=True)
model = AutoModelForSequenceClassification.from_pretrained(
    "Qwen/Qwen3-4B",
    num_labels=2,
    id2label=ID2LABEL,
    label2id=LABEL2ID,
    trust_remote_code=True
)

# Tokenize
def tokenize_function(examples):
    return tokenizer(
        examples["input"],
        truncation=True,
        padding="max_length",
        max_length=512,
    )

tokenized_dataset = dataset.map(
    tokenize_function,
    batched=True,
    remove_columns=["input", "label"]
)
```

For a complete training script, see the reference implementation in `train_star_trek_guard.py`.

## Use Cases

### 1. Content Moderation for Star Trek Chatbots

This dataset enables training guard models that can filter user inputs before they reach a Star Trek-specific AI assistant. Only Star Trek-related queries are allowed through, ensuring the assistant stays on-topic.

### 2. API-Based Moderation

The fine-tuned model can be deployed as a moderation API endpoint:

```python
# Example API endpoint (see star_trek_api_server.py for full implementation)
@app.route('/api/moderate', methods=['POST'])
def moderate():
    data = request.json
    message = data.get('message', '')
    
    # Classify the message
    inputs = tokenizer(message, return_tensors="pt", truncation=True, max_length=512)
    outputs = model(**inputs)
    predicted_label = ID2LABEL[outputs.logits.argmax().item()]
    
    # Return moderation result
    risk_level = "Safe" if predicted_label == "related" else "Unsafe"
    return jsonify({
        'risk_level': risk_level,
        'predicted_label': predicted_label,
        'confidence': float(torch.softmax(outputs.logits, dim=-1).max())
    })
```

### 3. Real-Time Chat Filtering

The guard model can be integrated into chat interfaces to provide real-time moderation, blocking non-Star Trek queries before they're sent to the LLM. See `star_trek_chat.html` for a complete implementation example.

## Model Training Recommendations

Based on the reference training script, recommended hyperparameters:

- **Base Model**: Qwen/Qwen3-4B
- **Learning Rate**: 2e-4
- **Batch Size**: 2 (with gradient accumulation of 16)
- **Epochs**: 3
- **Max Length**: 512 tokens
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
  - `r=16`
  - `lora_alpha=32`
  - `lora_dropout=0.05`
  - Target modules: `["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]`

## Dataset Examples

### Related Examples

```json
{"input": "What is the role of James T. Kirk in Star Trek?", "label": "related"}
{"input": "Who portrayed Spock in Star Trek?", "label": "related"}
{"input": "What is the Prime Directive in Star Trek?", "label": "related"}
{"input": "How does a warp drive work?", "label": "related"}
{"input": "What is the 49th Rule of Acquisition?", "label": "related"}
```

### Not Related Examples

```json
{"input": "What is the capital of France?", "label": "not_related"}
{"input": "What is 2 + 2?", "label": "not_related"}
{"input": "Is the sifaka endangered?", "label": "not_related"}
{"input": "When was baseball first played?", "label": "not_related"}
{"input": "How many employees does Spotify have?", "label": "not_related"}
```

## Label Mapping

The dataset uses the following label mapping for model training:

- `"not_related"` → Class ID `0`
- `"related"` → Class ID `1`

In the context of content moderation:
- **`related`** = **Safe** (Star Trek-related content, allowed)
- **`not_related`** = **Unsafe** (Non-Star Trek content, blocked)

## Citation

If you use this dataset in your research or project, please cite it appropriately:

```bibtex
@dataset{star_trek_guard_dataset,
  title={Star Trek Guard Dataset},
  author={Geoff Munn},
  year={2025},
  url={https://huggingface.co/datasets/geoffmunn/star-trek-guard-dataset}
}
```

## License

Apache 2.0

## Acknowledgments

This dataset was created for training guard models to ensure Star Trek AI assistants remain focused on Star Trek-related content, improving user experience and maintaining topic relevance.

## Related Resources

- **Training Script**: See `train_star_trek_guard.py` for a complete fine-tuning implementation
- **API Server**: See `star_trek_api_server.py` for deployment as a moderation API
- **Chat Interface**: See `star_trek_chat.html` for integration into a web-based chat application