Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,220 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- text-classification
|
| 5 |
+
- zero-shot-classification
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
tags:
|
| 9 |
+
- star_trek
|
| 10 |
+
- qwen
|
| 11 |
+
- Qwen3Guard
|
| 12 |
+
pretty_name: Star Trek Classifica
|
| 13 |
+
size_categories:
|
| 14 |
+
- n<1K
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Star Trek Guard Dataset
|
| 18 |
+
|
| 19 |
+
A binary classification dataset for training guard models to identify whether user inputs are related to Star Trek or not. This dataset is designed for fine-tuning language models to act as content filters, ensuring that only Star Trek-related queries are processed by specialized Star Trek AI assistants.
|
| 20 |
+
|
| 21 |
+
## Dataset Description
|
| 22 |
+
|
| 23 |
+
The Star Trek Guard Dataset contains **5,000 examples** of questions and statements labeled as either:
|
| 24 |
+
- **`related`**: Inputs that are relevant to Star Trek (characters, ships, episodes, concepts, etc.)
|
| 25 |
+
- **`not_related`**: Inputs that are not related to Star Trek (general knowledge, other topics, etc.)
|
| 26 |
+
|
| 27 |
+
### Dataset Structure
|
| 28 |
+
|
| 29 |
+
Each example in the dataset follows this JSON format:
|
| 30 |
+
|
| 31 |
+
```json
|
| 32 |
+
{"input": "What is the role of James T. Kirk in Star Trek?", "label": "related"}
|
| 33 |
+
{"input": "What is the capital of France?", "label": "not_related"}
|
| 34 |
+
```
|
| 35 |
+
|
| 36 |
+
### Fields
|
| 37 |
+
|
| 38 |
+
- **`input`** (string): The text input/question to be classified
|
| 39 |
+
- **`label`** (string): The classification label, either `"related"` or `"not_related"`
|
| 40 |
+
|
| 41 |
+
## Dataset Statistics
|
| 42 |
+
|
| 43 |
+
- **Total Examples**: 5,000
|
| 44 |
+
- **Format**: JSONL (JSON Lines)
|
| 45 |
+
- **Task**: Binary Text Classification
|
| 46 |
+
- **Labels**:
|
| 47 |
+
- `related`: Star Trek-related content
|
| 48 |
+
- `not_related`: Non-Star Trek content
|
| 49 |
+
|
| 50 |
+
## Usage
|
| 51 |
+
|
| 52 |
+
### Loading the Dataset
|
| 53 |
+
|
| 54 |
+
```python
|
| 55 |
+
from datasets import load_dataset
|
| 56 |
+
|
| 57 |
+
# Load from Hugging Face Hub
|
| 58 |
+
dataset = load_dataset("your-username/star-trek-guard-dataset")
|
| 59 |
+
|
| 60 |
+
# Or load from local JSONL file
|
| 61 |
+
dataset = load_dataset("json", data_files="star_trek_guard_dataset.jsonl")
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
### Example Usage in Training
|
| 65 |
+
|
| 66 |
+
This dataset is designed to be used with the Hugging Face Transformers library for fine-tuning sequence classification models. Here's a basic example:
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
from datasets import load_dataset
|
| 70 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 71 |
+
|
| 72 |
+
# Load dataset
|
| 73 |
+
dataset = load_dataset("json", data_files="star_trek_guard_dataset.jsonl")["train"]
|
| 74 |
+
|
| 75 |
+
# Map labels to IDs
|
| 76 |
+
LABEL2ID = {"not_related": 0, "related": 1}
|
| 77 |
+
ID2LABEL = {0: "not_related", 1: "related"}
|
| 78 |
+
|
| 79 |
+
dataset = dataset.map(lambda x: {"labels": LABEL2ID[x["label"]]})
|
| 80 |
+
|
| 81 |
+
# Split into train/test
|
| 82 |
+
dataset = dataset.train_test_split(test_size=0.1)
|
| 83 |
+
|
| 84 |
+
# Load tokenizer and model
|
| 85 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-4B", trust_remote_code=True)
|
| 86 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 87 |
+
"Qwen/Qwen3-4B",
|
| 88 |
+
num_labels=2,
|
| 89 |
+
id2label=ID2LABEL,
|
| 90 |
+
label2id=LABEL2ID,
|
| 91 |
+
trust_remote_code=True
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Tokenize
|
| 95 |
+
def tokenize_function(examples):
|
| 96 |
+
return tokenizer(
|
| 97 |
+
examples["input"],
|
| 98 |
+
truncation=True,
|
| 99 |
+
padding="max_length",
|
| 100 |
+
max_length=512,
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
tokenized_dataset = dataset.map(
|
| 104 |
+
tokenize_function,
|
| 105 |
+
batched=True,
|
| 106 |
+
remove_columns=["input", "label"]
|
| 107 |
+
)
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
For a complete training script, see the reference implementation in `train_star_trek_guard.py`.
|
| 111 |
+
|
| 112 |
+
## Use Cases
|
| 113 |
+
|
| 114 |
+
### 1. Content Moderation for Star Trek Chatbots
|
| 115 |
+
|
| 116 |
+
This dataset enables training guard models that can filter user inputs before they reach a Star Trek-specific AI assistant. Only Star Trek-related queries are allowed through, ensuring the assistant stays on-topic.
|
| 117 |
+
|
| 118 |
+
### 2. API-Based Moderation
|
| 119 |
+
|
| 120 |
+
The fine-tuned model can be deployed as a moderation API endpoint:
|
| 121 |
+
|
| 122 |
+
```python
|
| 123 |
+
# Example API endpoint (see star_trek_api_server.py for full implementation)
|
| 124 |
+
@app.route('/api/moderate', methods=['POST'])
|
| 125 |
+
def moderate():
|
| 126 |
+
data = request.json
|
| 127 |
+
message = data.get('message', '')
|
| 128 |
+
|
| 129 |
+
# Classify the message
|
| 130 |
+
inputs = tokenizer(message, return_tensors="pt", truncation=True, max_length=512)
|
| 131 |
+
outputs = model(**inputs)
|
| 132 |
+
predicted_label = ID2LABEL[outputs.logits.argmax().item()]
|
| 133 |
+
|
| 134 |
+
# Return moderation result
|
| 135 |
+
risk_level = "Safe" if predicted_label == "related" else "Unsafe"
|
| 136 |
+
return jsonify({
|
| 137 |
+
'risk_level': risk_level,
|
| 138 |
+
'predicted_label': predicted_label,
|
| 139 |
+
'confidence': float(torch.softmax(outputs.logits, dim=-1).max())
|
| 140 |
+
})
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
### 3. Real-Time Chat Filtering
|
| 144 |
+
|
| 145 |
+
The guard model can be integrated into chat interfaces to provide real-time moderation, blocking non-Star Trek queries before they're sent to the LLM. See `star_trek_chat.html` for a complete implementation example.
|
| 146 |
+
|
| 147 |
+
## Model Training Recommendations
|
| 148 |
+
|
| 149 |
+
Based on the reference training script, recommended hyperparameters:
|
| 150 |
+
|
| 151 |
+
- **Base Model**: Qwen/Qwen3-4B
|
| 152 |
+
- **Learning Rate**: 2e-4
|
| 153 |
+
- **Batch Size**: 2 (with gradient accumulation of 16)
|
| 154 |
+
- **Epochs**: 3
|
| 155 |
+
- **Max Length**: 512 tokens
|
| 156 |
+
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
|
| 157 |
+
- `r=16`
|
| 158 |
+
- `lora_alpha=32`
|
| 159 |
+
- `lora_dropout=0.05`
|
| 160 |
+
- Target modules: `["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]`
|
| 161 |
+
|
| 162 |
+
## Dataset Examples
|
| 163 |
+
|
| 164 |
+
### Related Examples
|
| 165 |
+
|
| 166 |
+
```json
|
| 167 |
+
{"input": "What is the role of James T. Kirk in Star Trek?", "label": "related"}
|
| 168 |
+
{"input": "Who portrayed Spock in Star Trek?", "label": "related"}
|
| 169 |
+
{"input": "What is the Prime Directive in Star Trek?", "label": "related"}
|
| 170 |
+
{"input": "How does a warp drive work?", "label": "related"}
|
| 171 |
+
{"input": "What is the 49th Rule of Acquisition?", "label": "related"}
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
### Not Related Examples
|
| 175 |
+
|
| 176 |
+
```json
|
| 177 |
+
{"input": "What is the capital of France?", "label": "not_related"}
|
| 178 |
+
{"input": "What is 2 + 2?", "label": "not_related"}
|
| 179 |
+
{"input": "Is the sifaka endangered?", "label": "not_related"}
|
| 180 |
+
{"input": "When was baseball first played?", "label": "not_related"}
|
| 181 |
+
{"input": "How many employees does Spotify have?", "label": "not_related"}
|
| 182 |
+
```
|
| 183 |
+
|
| 184 |
+
## Label Mapping
|
| 185 |
+
|
| 186 |
+
The dataset uses the following label mapping for model training:
|
| 187 |
+
|
| 188 |
+
- `"not_related"` → Class ID `0`
|
| 189 |
+
- `"related"` → Class ID `1`
|
| 190 |
+
|
| 191 |
+
In the context of content moderation:
|
| 192 |
+
- **`related`** = **Safe** (Star Trek-related content, allowed)
|
| 193 |
+
- **`not_related`** = **Unsafe** (Non-Star Trek content, blocked)
|
| 194 |
+
|
| 195 |
+
## Citation
|
| 196 |
+
|
| 197 |
+
If you use this dataset in your research or project, please cite it appropriately:
|
| 198 |
+
|
| 199 |
+
```bibtex
|
| 200 |
+
@dataset{star_trek_guard_dataset,
|
| 201 |
+
title={Star Trek Guard Dataset},
|
| 202 |
+
author={Your Name},
|
| 203 |
+
year={2024},
|
| 204 |
+
url={https://huggingface.co/datasets/your-username/star-trek-guard-dataset}
|
| 205 |
+
}
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
## License
|
| 209 |
+
|
| 210 |
+
Apache 2.0
|
| 211 |
+
|
| 212 |
+
## Acknowledgments
|
| 213 |
+
|
| 214 |
+
This dataset was created for training guard models to ensure Star Trek AI assistants remain focused on Star Trek-related content, improving user experience and maintaining topic relevance.
|
| 215 |
+
|
| 216 |
+
## Related Resources
|
| 217 |
+
|
| 218 |
+
- **Training Script**: See `train_star_trek_guard.py` for a complete fine-tuning implementation
|
| 219 |
+
- **API Server**: See `star_trek_api_server.py` for deployment as a moderation API
|
| 220 |
+
- **Chat Interface**: See `star_trek_chat.html` for integration into a web-based chat application
|