|
|
--- |
|
|
extra_gated_fields: |
|
|
First Name: text |
|
|
Last Name: text |
|
|
Date of birth: date_picker |
|
|
Country: country |
|
|
Affiliation: text |
|
|
Job title: |
|
|
type: select |
|
|
options: |
|
|
- Student |
|
|
- Research Graduate |
|
|
- AI researcher |
|
|
- AI developer/engineer |
|
|
- Reporter |
|
|
- Other |
|
|
geo: ip_location |
|
|
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox |
|
|
extra_gated_description: >- |
|
|
The information you provide will be collected, stored, processed and shared in |
|
|
accordance with the [Meta Privacy |
|
|
Policy](https://www.facebook.com/privacy/policy/). |
|
|
extra_gated_button_content: Submit |
|
|
language: |
|
|
- en |
|
|
license: other |
|
|
pretty_name: SACo-VEval |
|
|
configs: |
|
|
- config_name: SACo-VEval SA-V |
|
|
data_files: |
|
|
- split: test |
|
|
path: annotation/saco_veval_sav_test.json |
|
|
- split: val |
|
|
path: annotation/saco_veval_sav_val.json |
|
|
- config_name: SACo-VEval YT-Temporal-1B |
|
|
data_files: |
|
|
- split: test |
|
|
path: annotation/saco_veval_yt1b_test.json |
|
|
- split: val |
|
|
path: annotation/saco_veval_yt1b_val.json |
|
|
- config_name: SACo-VEval SmartGlasses |
|
|
data_files: |
|
|
- split: test |
|
|
path: annotation/saco_veval_smartglasses_test.json |
|
|
- split: val |
|
|
path: annotation/saco_veval_smartglasses_val.json |
|
|
--- |
|
|
|
|
|
# SA-Co/VEval Dataset |
|
|
**License** each domain has its own License |
|
|
* SA-Co/VEval - SA-V: CC-BY-NC 4.0 |
|
|
* SA-Co/VEval - YT-Temporal-1B: CC-BY-NC 4.0 |
|
|
* SA-Co/VEval - SmartGlasses: CC-by-4.0 |
|
|
|
|
|
**SA-Co/VEval** is an evaluation dataset comprising of 3 domains, each domain has a val and test split. |
|
|
* SA-Co/VEval - SA-V: videos are from the [SA-V dataset](https://ai.meta.com/datasets/segment-anything-video/) |
|
|
* SA-Co/VEval - YT-Temporal-1B: videos are from the [YT-Temporal-1B](https://cove.thecvf.com/datasets/704) |
|
|
* SA-Co/VEval - SmartGlasses: egocentric videos from [Smart Glasses](https://huggingface.co/datasets/facebook/SACo-VEval/blob/main/media/saco_sg.tar.gz) |
|
|
|
|
|
This Hugging Face dataset repo contains the following contents: |
|
|
``` |
|
|
datasets/facebook/SACo-VEval/tree/main/ |
|
|
βββ annotation/ |
|
|
β βββ saco_veval_sav_test.json |
|
|
β βββ saco_veval_sav_val.json |
|
|
β βββ saco_veval_smartglasses_test.json |
|
|
β βββ saco_veval_smartglasses_val.json |
|
|
β βββ saco_veval_yt1b_test.json |
|
|
β βββ saco_veval_yt1b_val.json |
|
|
βββ media/ |
|
|
βββ saco_sg.tar.gz |
|
|
βββ yt1b_start_end_time.json |
|
|
``` |
|
|
* annotation |
|
|
* all the GT json files |
|
|
* media |
|
|
* `saco_sg.tar.gz`: the preprocessed JPEGImages for SA-Co/VEval - SmartGlasses |
|
|
* `yt1b_start_end_time.json`: the Youtube video ids and the start and end time used in SA-Co/VEval - YT-Temporal-1B |
|
|
|
|
|
More detail to prepare the complete SA-Co/VEval Dataset can be found in the [SAM 3 Github](https://github.com/facebookresearch/sam3/tree/main/scripts/eval/veval). |
|
|
|
|
|
## Annotation Format |
|
|
The format is similar to the [YTVIS](https://youtube-vos.org/dataset/vis/) format. |
|
|
|
|
|
In the annotation json, e.g. `saco_veval_sav_test.json` there are 5 fields: |
|
|
* info: |
|
|
* A dict containing the dataset info |
|
|
* E.g. {'version': 'v1', 'date': '2025-09-24', 'description': 'SA-Co/VEval SA-V Test'} |
|
|
* videos |
|
|
* A list of videos that are used in the current annotation json |
|
|
* It contains {id, video_name, file_names, height, width, length} |
|
|
* annotations |
|
|
* A list of **positive** masklets and their related info |
|
|
* It contains {id, segmentations, bboxes, areas, iscrowd, video_id, height, width, category_id, noun_phrase} |
|
|
* video_id should match to the `videos - id` field above |
|
|
* category_id should match to the `categories - id` field below |
|
|
* segmentations is a list of [RLE](https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py) |
|
|
* categories |
|
|
* A **globally** used noun phrase id map, which is true across all 3 domains. |
|
|
* It contains {id, name} |
|
|
* name is the noun phrase |
|
|
* video_np_pairs |
|
|
* A list of video-np pairs, including both **positive** and **negative** used in the current annotation json |
|
|
* It contains {id, video_id, category_id, noun_phrase, num_masklets} |
|
|
* video_id should match the `videos - id` above |
|
|
* category_id should match the `categories - id` above |
|
|
* when `num_masklets > 0` it is a positive video-np pair, and the presenting masklets can be found in the annotations field |
|
|
* when `num_masklets = 0` it is a negative video-np pair, meaning no masklet presenting at all |
|
|
``` |
|
|
data { |
|
|
"info": info |
|
|
"videos": [video] |
|
|
"annotations": [annotation] |
|
|
"categories": [category] |
|
|
"video_np_pairs": [video_np_pair] |
|
|
} |
|
|
video { |
|
|
"id": int |
|
|
"video_name": str # e.g. sav_000000 |
|
|
"file_names": List[str] |
|
|
"height": int |
|
|
"width": width |
|
|
"length": length |
|
|
} |
|
|
annotation { |
|
|
"id": int |
|
|
"segmentations": List[RLE] |
|
|
"bboxes": List[List[int, int, int, int]] |
|
|
"areas": List[int] |
|
|
"iscrowd": int |
|
|
"video_id": str |
|
|
"height": int |
|
|
"width": int |
|
|
"category_id": int |
|
|
"noun_phrase": str |
|
|
} |
|
|
category { |
|
|
"id": int |
|
|
"name": str |
|
|
} |
|
|
video_np_pair { |
|
|
"id": int |
|
|
"video_id": str |
|
|
"category_id": int |
|
|
"noun_phrase": str |
|
|
"num_masklets" int |
|
|
} |
|
|
``` |
|
|
SAM 3 Github [sam3/examples/saco_veval_vis_example.ipynb](https://github.com/facebookresearch/sam3/blob/main/examples/saco_veval_vis_example.ipynb) shows some examples of the data format and data visualization. |