Datasets:

Modalities:
Text
Formats:
json
Languages:
English
Size:
< 1K
Libraries:
Datasets
pandas
License:
SACo-VEval / README.md
hkhedr's picture
initial commit
7b0c8e6 verified
---
extra_gated_fields:
First Name: text
Last Name: text
Date of birth: date_picker
Country: country
Affiliation: text
Job title:
type: select
options:
- Student
- Research Graduate
- AI researcher
- AI developer/engineer
- Reporter
- Other
geo: ip_location
By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy: checkbox
extra_gated_description: >-
The information you provide will be collected, stored, processed and shared in
accordance with the [Meta Privacy
Policy](https://www.facebook.com/privacy/policy/).
extra_gated_button_content: Submit
language:
- en
license: other
pretty_name: SACo-VEval
configs:
- config_name: SACo-VEval SA-V
data_files:
- split: test
path: annotation/saco_veval_sav_test.json
- split: val
path: annotation/saco_veval_sav_val.json
- config_name: SACo-VEval YT-Temporal-1B
data_files:
- split: test
path: annotation/saco_veval_yt1b_test.json
- split: val
path: annotation/saco_veval_yt1b_val.json
- config_name: SACo-VEval SmartGlasses
data_files:
- split: test
path: annotation/saco_veval_smartglasses_test.json
- split: val
path: annotation/saco_veval_smartglasses_val.json
---
# SA-Co/VEval Dataset
**License** each domain has its own License
* SA-Co/VEval - SA-V: CC-BY-NC 4.0
* SA-Co/VEval - YT-Temporal-1B: CC-BY-NC 4.0
* SA-Co/VEval - SmartGlasses: CC-by-4.0
**SA-Co/VEval** is an evaluation dataset comprising of 3 domains, each domain has a val and test split.
* SA-Co/VEval - SA-V: videos are from the [SA-V dataset](https://ai.meta.com/datasets/segment-anything-video/)
* SA-Co/VEval - YT-Temporal-1B: videos are from the [YT-Temporal-1B](https://cove.thecvf.com/datasets/704)
* SA-Co/VEval - SmartGlasses: egocentric videos from [Smart Glasses](https://huggingface.co/datasets/facebook/SACo-VEval/blob/main/media/saco_sg.tar.gz)
This Hugging Face dataset repo contains the following contents:
```
datasets/facebook/SACo-VEval/tree/main/
β”œβ”€β”€ annotation/
β”‚ β”œβ”€β”€ saco_veval_sav_test.json
β”‚ β”œβ”€β”€ saco_veval_sav_val.json
β”‚ β”œβ”€β”€ saco_veval_smartglasses_test.json
β”‚ β”œβ”€β”€ saco_veval_smartglasses_val.json
β”‚ β”œβ”€β”€ saco_veval_yt1b_test.json
β”‚ β”œβ”€β”€ saco_veval_yt1b_val.json
└── media/
β”œβ”€β”€ saco_sg.tar.gz
└── yt1b_start_end_time.json
```
* annotation
* all the GT json files
* media
* `saco_sg.tar.gz`: the preprocessed JPEGImages for SA-Co/VEval - SmartGlasses
* `yt1b_start_end_time.json`: the Youtube video ids and the start and end time used in SA-Co/VEval - YT-Temporal-1B
More detail to prepare the complete SA-Co/VEval Dataset can be found in the [SAM 3 Github](https://github.com/facebookresearch/sam3/tree/main/scripts/eval/veval).
## Annotation Format
The format is similar to the [YTVIS](https://youtube-vos.org/dataset/vis/) format.
In the annotation json, e.g. `saco_veval_sav_test.json` there are 5 fields:
* info:
* A dict containing the dataset info
* E.g. {'version': 'v1', 'date': '2025-09-24', 'description': 'SA-Co/VEval SA-V Test'}
* videos
* A list of videos that are used in the current annotation json
* It contains {id, video_name, file_names, height, width, length}
* annotations
* A list of **positive** masklets and their related info
* It contains {id, segmentations, bboxes, areas, iscrowd, video_id, height, width, category_id, noun_phrase}
* video_id should match to the `videos - id` field above
* category_id should match to the `categories - id` field below
* segmentations is a list of [RLE](https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/mask.py)
* categories
* A **globally** used noun phrase id map, which is true across all 3 domains.
* It contains {id, name}
* name is the noun phrase
* video_np_pairs
* A list of video-np pairs, including both **positive** and **negative** used in the current annotation json
* It contains {id, video_id, category_id, noun_phrase, num_masklets}
* video_id should match the `videos - id` above
* category_id should match the `categories - id` above
* when `num_masklets > 0` it is a positive video-np pair, and the presenting masklets can be found in the annotations field
* when `num_masklets = 0` it is a negative video-np pair, meaning no masklet presenting at all
```
data {
"info": info
"videos": [video]
"annotations": [annotation]
"categories": [category]
"video_np_pairs": [video_np_pair]
}
video {
"id": int
"video_name": str # e.g. sav_000000
"file_names": List[str]
"height": int
"width": width
"length": length
}
annotation {
"id": int
"segmentations": List[RLE]
"bboxes": List[List[int, int, int, int]]
"areas": List[int]
"iscrowd": int
"video_id": str
"height": int
"width": int
"category_id": int
"noun_phrase": str
}
category {
"id": int
"name": str
}
video_np_pair {
"id": int
"video_id": str
"category_id": int
"noun_phrase": str
"num_masklets" int
}
```
SAM 3 Github [sam3/examples/saco_veval_vis_example.ipynb](https://github.com/facebookresearch/sam3/blob/main/examples/saco_veval_vis_example.ipynb) shows some examples of the data format and data visualization.