Datasets:
sv_id
stringlengths 17
19
β | sample_id
stringlengths 15
15
β | sv_type
stringclasses 4
values | population
stringclasses 7
values | chrom
stringclasses 22
values | start
int64 5.79k
100M
β | end
int64 16.8k
100M
β | length_bp
int64 1
4.86M
β | is_population_specific
bool 2
classes | target_population
stringclasses 7
values |
|---|---|---|---|---|---|---|---|---|---|
SV_CNV_del_000001
|
SV_SAMPLE_00998
|
CNV_del
|
SSA_West
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_00488
|
CNV_del
|
SSA_West
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_00009
|
CNV_del
|
SSA_West
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05638
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04502
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04261
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03012
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03677
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05944
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05527
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05643
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03349
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05512
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03027
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04990
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04601
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05077
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04798
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05050
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05887
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04962
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05700
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05370
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03552
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03618
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04023
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03852
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04056
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04573
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05903
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03988
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03936
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03420
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03839
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04684
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03657
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03857
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04158
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03363
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03411
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05558
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05089
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04883
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05708
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03445
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05068
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03128
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05059
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03221
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04922
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04099
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05775
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05045
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03681
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04345
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04307
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05923
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03093
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04991
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03191
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03069
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04872
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04415
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03109
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05995
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05425
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04804
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03658
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04741
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03108
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04458
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04761
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04887
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05771
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05831
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04736
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04081
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03935
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05223
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05096
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05593
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05800
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05884
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03518
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05393
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03148
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03785
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03404
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03475
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05876
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03123
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05281
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04000
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03814
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04434
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05353
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03061
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_05936
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_03048
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SV_CNV_del_000001
|
SV_SAMPLE_04049
|
CNV_del
|
SSA_East
|
20
| 74,030,248
| 74,093,731
| 63,483
| false
| null |
SSA Multi-ancestry Structural Variation Catalog (Germline, Synthetic)
Dataset summary
This dataset provides a germline structural variation (SV) catalog for a multi-ancestry cohort of 20,000 synthetic individuals with a strong focus on sub-Saharan African (SSA) ancestry. It complements the genome-wide SNP array synthetic dataset by adding copy number variants (CNVs) and small indels with explicit population-specific structural variants.
The cohort includes:
- Four SSA regional groups (West, East, Central, Southern).
- An African American women (AAW) group as an admixed African diaspora reference.
- European (EUR) and East Asian (EAS) reference panels.
SVs are simulated on a synthetic genome scaffold (chromosomes 1β22, each 100 Mb) and are not aligned to a real reference genome. The dataset is therefore suitable for methods development and benchmarking (e.g., ancestry-aware SV detection, population genetics, burden analysis), not for clinical or individual-level inference.
All data are fully synthetic and were generated under the GENOMICS Synthetic Data Playbook used across the Electric Sheep Africa dataset family.
Cohort design
Sample size and populations
Total N: 20,000 synthetic individuals.
Populations and sample sizes:
SSA_West: 3,000SSA_East: 3,000SSA_Central: 2,000SSA_Southern: 2,000AAW(African American women, admixed): 3,000EUR(European reference): 4,000EAS(East Asian reference): 3,000
Sex distribution:
Male: 50%Female: 50%
The SSA subgroups are intended to be compatible with other SSA-focused synthetic datasets from Electric Sheep Africa (e.g., SNP array, colorectal genomic, ovarian somatic), enabling cross-dataset method development.
Structural variation model
SV classes
The catalog includes two broad classes of germline structural variants:
- Copy number variants (CNVs)
CNV_delβ deletions.CNV_dupβ duplications.
- Small indels (1β50 bp)
indel_delβ small deletions.indel_insβ small insertions.
Each variant is represented as a region on a synthetic chromosome with:
chromβ synthetic chromosome ("1"β"22").start,endβ 0-based coordinates within the 100 Mb chromosome.length_bpβ event length in base pairs.
CNV and indel burden per individual
Per-sample SV burdens were tuned using literature-informed expectations from:
- Redon et al., Nature 2006 (first global CNV map).
- Sudmant et al., Nature 2015 (1000 Genomes integrated SV map).
- Collins et al., Nature 2020 (gnomAD-SV reference).
Target mean counts per individual (approximated in the generator):
- CNVs
CNV_del: mean ~80 deletions per individual (std ~25).CNV_dup: mean ~60 duplications per individual (std ~20).
- Small indels (1β50 bp)
indel_del: mean ~200 deletions per individual (std ~50).indel_ins: mean ~200 insertions per individual (std ~50).
This yields roughly 140 CNVs and 400 small indels per genome on average, producing a diverse but computationally manageable SV catalog.
Length distributions
SV lengths follow type-specific distributions:
CNVs (CNV_del, CNV_dup)
- Log10-normal length distribution.
- Approximate median length ~100 kb.
- Length range: 1 kb β 5 Mb.
Indels (indel_del, indel_ins)
- Uniform integer length.
- Length range: 1 β 50 bp.
These parameters are anchored qualitatively to the size spectra reported in large-scale SV resources, particularly 1000 Genomes SV and gnomAD-SV.
Population-specific structural variants
A key design feature is the inclusion of population-enriched structural variants, motivated by:
- Redon et al. 2006 β CNVs with marked population differentiation.
- Collins et al. 2020 β numerous African- and non-African-enriched SVs in gnomAD-SV.
In the synthetic model:
A fixed fraction of events are designated population-specific:
CNV_del: 5% of deletions.CNV_dup: 5% of duplications.indel_del: 2% of small deletions.indel_ins: 2% of small insertions.
For each population-specific SV:
- One target population is chosen (e.g., SSA_West, EUR, EAS, AAW).
- In the target population, carrier frequencies are drawn to be moderately common (roughly 5β25%).
- In non-target populations, carrier frequencies are constrained to be very low (β€0.5%).
This structure yields many SVs where target/non-target frequency ratios exceed 5x, giving a clear population-specific signal for benchmarking ancestry-aware SV methods and population genetics pipelines.
Files and schema
1. sv_samples.parquet
One row per synthetic individual.
Core columns:
sample_idβ unique synthetic sample identifier.populationβ one ofSSA_West,SSA_East,SSA_Central,SSA_Southern,AAW,EUR,EAS.regionβ SSA subregion (for SSA populations) orNon_SSAfor reference panels.is_SSAβ boolean flag for SSA populations.is_reference_panelβ boolean flag for AAW/EUR/EAS reference groups.sexβMaleorFemale.
Burden summary columns:
n_CNV_delβ count of CNV deletions in this sample.n_CNV_dupβ count of CNV duplications in this sample.n_indel_delβ count of small deletions in this sample.n_indel_insβ count of small insertions in this sample.n_cnvsβ total CNV count (n_CNV_del + n_CNV_dup).n_indelsβ total indel count (n_indel_del + n_indel_ins).n_sv_totalβ total SV count per sample.
These columns allow simple burden analyses by ancestry, region, and sex without loading the full event table.
2. sv_events.parquet
One row per SV carrier (i.e., per event per sample).
Core columns:
sv_idβ structural variant identifier (shared across carriers of the same event).sample_idβ ID of the carrier.sv_typeβCNV_del,CNV_dup,indel_del, orindel_ins.populationβ population label of the carrier sample.chromβ synthetic chromosome ("1"β"22").startβ 0-based start coordinate (inclusive).endβ end coordinate (exclusive).length_bpβ event length in base pairs.is_population_specificβ boolean flag;Truefor population-enriched events.target_populationβ population in which the event is enriched (ifis_population_specific=True).
This table is the main event-level catalog for SV-based analyses.
3. sv_frequencies.parquet
One row per SVβpopulation combination, summarizing carrier frequencies.
Core columns:
sv_idβ structural variant identifier.sv_typeβ SV type.populationβ population label.carrier_countβ number of carriers in that population.carrier_frequencyβ carrier_count / N_population.is_population_specificβ matches the flag insv_events.parquet.target_populationβ target population for enriched SVs.
This table is designed for population genetics use cases (e.g., allele frequency spectra, Fst-like metrics, enrichment analyses) without needing to aggregate the full event table.
Generation and validation
Generation
The dataset was generated using the Python script:
structural_variation/scripts/generate_structural_variation.py
Key steps:
- Sample generation
- Creates 20,000 individuals partitioned across the seven populations with the configured sex distribution.
- SV event definition
- For each SV type, defines a set of synthetic events with positions and lengths on the 22 synthetic chromosomes.
- Distinguishes a subset of population-specific events with a target population.
- Frequency and carrier assignment
- For each event and population, draws carrier frequencies from Beta distributions (with different behavior for common vs low-frequency variants), modified for population-specific events.
- Samples carrier individuals accordingly, generating the event-level and frequency tables.
- Burden summarization
- Aggregates per-sample SV counts by type and totals.
The configuration driving this process is stored in:
structural_variation/configs/structural_variation_config.yaml- Literature links are documented in:
structural_variation/docs/LITERATURE_INVENTORY.csv
Validation
Validation follows the GENOMICS Synthetic Data Playbook and was performed using:
structural_variation/scripts/validate_structural_variation.py
The validator reads the three Parquet tables and computes multiple checks, including:
- C01 β Sample size matches config
- Confirms N = 20,000.
- C02 β Population sample sizes vs config
- Per-population counts within an acceptable relative deviation (10%).
- C03 β Required columns present
- Ensures essential schema columns in samples, events, and frequencies.
- C04 β SV burden per sample vs config
- Compares observed mean counts by SV type to configured targets.
- C05 β SV length spectrum by type
- Checks that min/median/max lengths are consistent with configured ranges.
- C06 β Population-specific enrichment
- Quantifies target vs non-target carrier frequency ratios for population-specific SVs and confirms strong enrichment.
- C07 β Missingness in key variables
- Ensures negligible missingness in key columns.
The validation outputs a Markdown report:
structural_variation/output/validation_report.md
For the released version of this dataset, all defined checks completed with an overall status of PASS.
Intended use
This dataset is intended for:
- Methods development for SV detection, genotyping, and frequency estimation in multi-ancestry cohorts.
- Population genetics and ancestry-aware modeling of CNVs and indels, including SSA-focused questions.
- Benchmarking of burden tests and association pipelines that incorporate structural variation.
- Teaching and demonstration of SV analysis workflows without access to sensitive human data.
It is not suitable for:
- Clinical decision-making.
- Individual-level risk prediction.
- Inference about real individuals or specific real-world populations.
All samples and variants are fully synthetic and do not correspond to real persons.
Ethical and privacy considerations
- The dataset is entirely synthetic and contains no real patient data.
- Cohort labels (e.g., SSA regions, AAW, EUR, EAS) are intended for methodological realism only.
- Users should avoid framing analyses as statements about real-world groups and should instead treat this resource as a simulation tool.
License
- License: CC BY-NC 4.0.
- Non-commercial use is encouraged for research, teaching, and methods development.
Citation
If you use this dataset in your work, please cite:
Electric Sheep Africa. "SSA Multi-ancestry Structural Variation Catalog (Germline, Synthetic)." Hugging Face Datasets.
and, where appropriate, cite the SV resources that inspired the design:
- Redon R, et al. Global variation in copy number in the human genome. Nature. 2006.
- Sudmant PH, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015.
- Collins RL, et al. A structural variation reference for medical and population genetics. Nature. 2020.
- Downloads last month
- 24