Dataset Viewer
Auto-converted to Parquet
sv_id
stringlengths
17
19
βŒ€
sample_id
stringlengths
15
15
βŒ€
sv_type
stringclasses
4 values
population
stringclasses
7 values
chrom
stringclasses
22 values
start
int64
5.79k
100M
βŒ€
end
int64
16.8k
100M
βŒ€
length_bp
int64
1
4.86M
βŒ€
is_population_specific
bool
2 classes
target_population
stringclasses
7 values
SV_CNV_del_000001
SV_SAMPLE_00998
CNV_del
SSA_West
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_00488
CNV_del
SSA_West
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_00009
CNV_del
SSA_West
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05638
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04502
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04261
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03012
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03677
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05944
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05527
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05643
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03349
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05512
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03027
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04990
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04601
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05077
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04798
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05050
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05887
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04962
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05700
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05370
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03552
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03618
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04023
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03852
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04056
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04573
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05903
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03988
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03936
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03420
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03839
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04684
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03657
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03857
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04158
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03363
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03411
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05558
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05089
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04883
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05708
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03445
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05068
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03128
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05059
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03221
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04922
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04099
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05775
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05045
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03681
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04345
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04307
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05923
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03093
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04991
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03191
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03069
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04872
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04415
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03109
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05995
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05425
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04804
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03658
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04741
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03108
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04458
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04761
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04887
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05771
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05831
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04736
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04081
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03935
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05223
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05096
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05593
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05800
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05884
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03518
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05393
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03148
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03785
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03404
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03475
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05876
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03123
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05281
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04000
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03814
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04434
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05353
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03061
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_05936
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_03048
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
SV_CNV_del_000001
SV_SAMPLE_04049
CNV_del
SSA_East
20
74,030,248
74,093,731
63,483
false
null
End of preview. Expand in Data Studio

SSA Multi-ancestry Structural Variation Catalog (Germline, Synthetic)

Dataset summary

This dataset provides a germline structural variation (SV) catalog for a multi-ancestry cohort of 20,000 synthetic individuals with a strong focus on sub-Saharan African (SSA) ancestry. It complements the genome-wide SNP array synthetic dataset by adding copy number variants (CNVs) and small indels with explicit population-specific structural variants.

The cohort includes:

  • Four SSA regional groups (West, East, Central, Southern).
  • An African American women (AAW) group as an admixed African diaspora reference.
  • European (EUR) and East Asian (EAS) reference panels.

SVs are simulated on a synthetic genome scaffold (chromosomes 1–22, each 100 Mb) and are not aligned to a real reference genome. The dataset is therefore suitable for methods development and benchmarking (e.g., ancestry-aware SV detection, population genetics, burden analysis), not for clinical or individual-level inference.

All data are fully synthetic and were generated under the GENOMICS Synthetic Data Playbook used across the Electric Sheep Africa dataset family.

Cohort design

Sample size and populations

  • Total N: 20,000 synthetic individuals.

  • Populations and sample sizes:

    • SSA_West: 3,000
    • SSA_East: 3,000
    • SSA_Central: 2,000
    • SSA_Southern: 2,000
    • AAW (African American women, admixed): 3,000
    • EUR (European reference): 4,000
    • EAS (East Asian reference): 3,000
  • Sex distribution:

    • Male: 50%
    • Female: 50%

The SSA subgroups are intended to be compatible with other SSA-focused synthetic datasets from Electric Sheep Africa (e.g., SNP array, colorectal genomic, ovarian somatic), enabling cross-dataset method development.

Structural variation model

SV classes

The catalog includes two broad classes of germline structural variants:

  • Copy number variants (CNVs)
    • CNV_del – deletions.
    • CNV_dup – duplications.
  • Small indels (1–50 bp)
    • indel_del – small deletions.
    • indel_ins – small insertions.

Each variant is represented as a region on a synthetic chromosome with:

  • chrom – synthetic chromosome ("1"–"22").
  • start, end – 0-based coordinates within the 100 Mb chromosome.
  • length_bp – event length in base pairs.

CNV and indel burden per individual

Per-sample SV burdens were tuned using literature-informed expectations from:

  • Redon et al., Nature 2006 (first global CNV map).
  • Sudmant et al., Nature 2015 (1000 Genomes integrated SV map).
  • Collins et al., Nature 2020 (gnomAD-SV reference).

Target mean counts per individual (approximated in the generator):

  • CNVs
    • CNV_del: mean ~80 deletions per individual (std ~25).
    • CNV_dup: mean ~60 duplications per individual (std ~20).
  • Small indels (1–50 bp)
    • indel_del: mean ~200 deletions per individual (std ~50).
    • indel_ins: mean ~200 insertions per individual (std ~50).

This yields roughly 140 CNVs and 400 small indels per genome on average, producing a diverse but computationally manageable SV catalog.

Length distributions

SV lengths follow type-specific distributions:

  • CNVs (CNV_del, CNV_dup)

    • Log10-normal length distribution.
    • Approximate median length ~100 kb.
    • Length range: 1 kb – 5 Mb.
  • Indels (indel_del, indel_ins)

    • Uniform integer length.
    • Length range: 1 – 50 bp.

These parameters are anchored qualitatively to the size spectra reported in large-scale SV resources, particularly 1000 Genomes SV and gnomAD-SV.

Population-specific structural variants

A key design feature is the inclusion of population-enriched structural variants, motivated by:

  • Redon et al. 2006 – CNVs with marked population differentiation.
  • Collins et al. 2020 – numerous African- and non-African-enriched SVs in gnomAD-SV.

In the synthetic model:

  • A fixed fraction of events are designated population-specific:

    • CNV_del: 5% of deletions.
    • CNV_dup: 5% of duplications.
    • indel_del: 2% of small deletions.
    • indel_ins: 2% of small insertions.
  • For each population-specific SV:

    • One target population is chosen (e.g., SSA_West, EUR, EAS, AAW).
    • In the target population, carrier frequencies are drawn to be moderately common (roughly 5–25%).
    • In non-target populations, carrier frequencies are constrained to be very low (≀0.5%).

This structure yields many SVs where target/non-target frequency ratios exceed 5x, giving a clear population-specific signal for benchmarking ancestry-aware SV methods and population genetics pipelines.

Files and schema

1. sv_samples.parquet

One row per synthetic individual.

Core columns:

  • sample_id – unique synthetic sample identifier.
  • population – one of SSA_West, SSA_East, SSA_Central, SSA_Southern, AAW, EUR, EAS.
  • region – SSA subregion (for SSA populations) or Non_SSA for reference panels.
  • is_SSA – boolean flag for SSA populations.
  • is_reference_panel – boolean flag for AAW/EUR/EAS reference groups.
  • sex – Male or Female.

Burden summary columns:

  • n_CNV_del – count of CNV deletions in this sample.
  • n_CNV_dup – count of CNV duplications in this sample.
  • n_indel_del – count of small deletions in this sample.
  • n_indel_ins – count of small insertions in this sample.
  • n_cnvs – total CNV count (n_CNV_del + n_CNV_dup).
  • n_indels – total indel count (n_indel_del + n_indel_ins).
  • n_sv_total – total SV count per sample.

These columns allow simple burden analyses by ancestry, region, and sex without loading the full event table.

2. sv_events.parquet

One row per SV carrier (i.e., per event per sample).

Core columns:

  • sv_id – structural variant identifier (shared across carriers of the same event).
  • sample_id – ID of the carrier.
  • sv_type – CNV_del, CNV_dup, indel_del, or indel_ins.
  • population – population label of the carrier sample.
  • chrom – synthetic chromosome ("1"–"22").
  • start – 0-based start coordinate (inclusive).
  • end – end coordinate (exclusive).
  • length_bp – event length in base pairs.
  • is_population_specific – boolean flag; True for population-enriched events.
  • target_population – population in which the event is enriched (if is_population_specific=True).

This table is the main event-level catalog for SV-based analyses.

3. sv_frequencies.parquet

One row per SV–population combination, summarizing carrier frequencies.

Core columns:

  • sv_id – structural variant identifier.
  • sv_type – SV type.
  • population – population label.
  • carrier_count – number of carriers in that population.
  • carrier_frequency – carrier_count / N_population.
  • is_population_specific – matches the flag in sv_events.parquet.
  • target_population – target population for enriched SVs.

This table is designed for population genetics use cases (e.g., allele frequency spectra, Fst-like metrics, enrichment analyses) without needing to aggregate the full event table.

Generation and validation

Generation

The dataset was generated using the Python script:

  • structural_variation/scripts/generate_structural_variation.py

Key steps:

  1. Sample generation
    • Creates 20,000 individuals partitioned across the seven populations with the configured sex distribution.
  2. SV event definition
    • For each SV type, defines a set of synthetic events with positions and lengths on the 22 synthetic chromosomes.
    • Distinguishes a subset of population-specific events with a target population.
  3. Frequency and carrier assignment
    • For each event and population, draws carrier frequencies from Beta distributions (with different behavior for common vs low-frequency variants), modified for population-specific events.
    • Samples carrier individuals accordingly, generating the event-level and frequency tables.
  4. Burden summarization
    • Aggregates per-sample SV counts by type and totals.

The configuration driving this process is stored in:

  • structural_variation/configs/structural_variation_config.yaml
  • Literature links are documented in:
  • structural_variation/docs/LITERATURE_INVENTORY.csv

Validation

Validation follows the GENOMICS Synthetic Data Playbook and was performed using:

  • structural_variation/scripts/validate_structural_variation.py

The validator reads the three Parquet tables and computes multiple checks, including:

  • C01 – Sample size matches config
    • Confirms N = 20,000.
  • C02 – Population sample sizes vs config
    • Per-population counts within an acceptable relative deviation (10%).
  • C03 – Required columns present
    • Ensures essential schema columns in samples, events, and frequencies.
  • C04 – SV burden per sample vs config
    • Compares observed mean counts by SV type to configured targets.
  • C05 – SV length spectrum by type
    • Checks that min/median/max lengths are consistent with configured ranges.
  • C06 – Population-specific enrichment
    • Quantifies target vs non-target carrier frequency ratios for population-specific SVs and confirms strong enrichment.
  • C07 – Missingness in key variables
    • Ensures negligible missingness in key columns.

The validation outputs a Markdown report:

  • structural_variation/output/validation_report.md

For the released version of this dataset, all defined checks completed with an overall status of PASS.

Intended use

This dataset is intended for:

  • Methods development for SV detection, genotyping, and frequency estimation in multi-ancestry cohorts.
  • Population genetics and ancestry-aware modeling of CNVs and indels, including SSA-focused questions.
  • Benchmarking of burden tests and association pipelines that incorporate structural variation.
  • Teaching and demonstration of SV analysis workflows without access to sensitive human data.

It is not suitable for:

  • Clinical decision-making.
  • Individual-level risk prediction.
  • Inference about real individuals or specific real-world populations.

All samples and variants are fully synthetic and do not correspond to real persons.

Ethical and privacy considerations

  • The dataset is entirely synthetic and contains no real patient data.
  • Cohort labels (e.g., SSA regions, AAW, EUR, EAS) are intended for methodological realism only.
  • Users should avoid framing analyses as statements about real-world groups and should instead treat this resource as a simulation tool.

License

  • License: CC BY-NC 4.0.
  • Non-commercial use is encouraged for research, teaching, and methods development.

Citation

If you use this dataset in your work, please cite:

Electric Sheep Africa. "SSA Multi-ancestry Structural Variation Catalog (Germline, Synthetic)." Hugging Face Datasets.

and, where appropriate, cite the SV resources that inspired the design:

  • Redon R, et al. Global variation in copy number in the human genome. Nature. 2006.
  • Sudmant PH, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015.
  • Collins RL, et al. A structural variation reference for medical and population genetics. Nature. 2020.
Downloads last month
24

Collection including electricsheepafrica/ssa-structural-variation-catalog