Datasets:
id
int64 1
10k
| gestational_age
float64 24
44
| birth_weight
float64 0.5
5.03
| is_sga
bool 2
classes | birth_asphyxia
bool 2
classes | neonatal_seizures
bool 2
classes | hyperbilirubinemia
bool 2
classes | neonatal_infection
bool 2
classes | maternal_infection
bool 2
classes | preclampsia
bool 2
classes | malaria_with_seizures
bool 2
classes | tuberculous_meningitis
bool 2
classes | head_control_age
float64 -2.2
16.5
| sitting_age
float64 1.7
43
| crawling_age
float64 2.4
30
⌀ | walking_age
float64 -1.6
43.7
⌀ | epilepsy
bool 2
classes | feeding_difficulties
bool 2
classes | visual_impairment
bool 2
classes | hearing_impairment
bool 2
classes | speech_impairment
bool 2
classes | intellectual_disability
bool 2
classes | tone_abnormality
stringclasses 4
values | has_cp
bool 2
classes | cp_type
stringclasses 5
values | cp_subtype
stringclasses 4
values | gmfcs_level
float64 1
5
⌀ | cp_probability_score
float64 0
0.81
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1
| 38.9
| 2.66
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.9
| 5.2
| 9.9
| 16.1
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
2
| 34.1
| 1.46
| true
| false
| true
| true
| false
| false
| false
| false
| false
| 2.2
| 4.8
| 7.6
| 12.7
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.543
|
3
| 39
| 2.74
| false
| false
| false
| false
| false
| true
| false
| false
| false
| 2.7
| 7.3
| 11.3
| 12.3
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.062
|
4
| 28.7
| 1.78
| true
| false
| false
| false
| false
| false
| false
| false
| false
| 2.9
| 6.5
| 7.2
| 11.8
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.177
|
5
| 39.3
| 2.87
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.3
| 6
| 8.1
| 11
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
6
| 36.6
| 2.98
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 3.2
| 6.3
| 7.5
| 14.5
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.007
|
7
| 29.5
| 2.61
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.6
| 5.7
| 9.2
| 15.3
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.059
|
8
| 37.7
| 3.18
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.7
| 4.5
| 7.2
| 10.1
| false
| true
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
9
| 40.6
| 2.97
| false
| false
| false
| true
| false
| false
| false
| false
| false
| 1.8
| 6.4
| 8.2
| 11.1
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.122
|
10
| 37.4
| 3.71
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.6
| 7.4
| 8.2
| 13.3
| false
| true
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
11
| 29
| 2.03
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 4.6
| 12.9
| 15.6
| 22
| false
| true
| false
| false
| true
| true
|
hypertonia
| true
|
spastic
|
unilateral
| 2
| 0.088
|
12
| 39.9
| 3.04
| false
| false
| false
| false
| false
| false
| true
| false
| false
| 2.7
| 5.3
| 7
| 14.9
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.002
|
13
| 38.2
| 2.06
| true
| false
| false
| false
| false
| false
| false
| false
| false
| 2.5
| 7.1
| 10.6
| 13.1
| false
| false
| false
| false
| true
| false
| null | false
| null | null | null | 0.065
|
14
| 38.2
| 3.13
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.5
| 5
| 10.4
| 11.8
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
15
| 42.3
| 2.98
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.6
| 5.5
| 8.7
| 11.4
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
16
| 39.2
| 3.93
| false
| false
| false
| false
| false
| true
| false
| false
| false
| 1.9
| 6.8
| 8.5
| 7.8
| false
| false
| false
| false
| true
| false
| null | false
| null | null | null | 0.062
|
17
| 29.3
| 1.69
| true
| true
| false
| false
| true
| false
| false
| false
| false
| 3.6
| 12.3
| 17.9
| 23
| false
| false
| false
| false
| false
| false
|
hypertonia
| true
|
spastic
|
bilateral
| 2
| 0.527
|
18
| 40.6
| 3.32
| false
| false
| false
| false
| true
| false
| false
| false
| false
| 2.2
| 6.7
| 11.2
| 13
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.152
|
19
| 40.2
| 3.85
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2
| 6.8
| 10.3
| 12.8
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
20
| 39.8
| 3.91
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 0.5
| 5.8
| 7.9
| 11.6
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
21
| 38.1
| 3.23
| false
| false
| false
| false
| true
| false
| false
| false
| false
| 1.8
| 5.9
| 8.8
| 12.9
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.152
|
22
| 38.7
| 3.42
| false
| false
| false
| false
| false
| true
| false
| false
| false
| 5.5
| 12.7
| 17.6
| 29.1
| false
| true
| false
| false
| true
| false
|
hypertonia
| true
|
spastic
|
bilateral
| 3
| 0.062
|
23
| 37.3
| 3.24
| false
| true
| false
| false
| true
| false
| false
| false
| false
| 2.3
| 6.2
| 5.2
| 15
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.353
|
24
| 37.1
| 3.39
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.6
| 5.2
| 10.4
| 11.9
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
25
| 38.6
| 3.08
| false
| true
| true
| false
| false
| false
| false
| false
| false
| 1.4
| 5.3
| 9.5
| 11.1
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.453
|
26
| 38.9
| 3.14
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.3
| 5.7
| 10.2
| 12.3
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
27
| 28.4
| 2.36
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2
| 3.7
| 10
| 11.2
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.088
|
28
| 41.3
| 3.19
| false
| false
| true
| false
| false
| false
| false
| false
| false
| 1.9
| 5.6
| 10.5
| 14.7
| false
| false
| true
| false
| false
| false
| null | false
| null | null | null | 0.253
|
29
| 38.4
| 3.49
| false
| true
| false
| false
| false
| false
| false
| false
| false
| 2.3
| 4.6
| 9.1
| 7
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.203
|
30
| 38.5
| 2.71
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.1
| 6.9
| 8.8
| 15.3
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
31
| 36.8
| 1.79
| true
| false
| false
| false
| false
| false
| false
| false
| false
| 0.9
| 6.7
| 10.3
| 13.7
| false
| true
| false
| false
| false
| false
| null | false
| null | null | null | 0.073
|
32
| 32.8
| 1.37
| true
| false
| false
| false
| false
| false
| false
| true
| false
| 6.1
| 16.5
| 19.9
| 25.2
| true
| true
| true
| false
| true
| true
|
hypertonia
| true
|
spastic
|
unilateral
| 3
| 0.205
|
33
| 37.4
| 3.02
| false
| true
| false
| true
| false
| false
| false
| false
| false
| 2.8
| 7.6
| 11.5
| 11.6
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.323
|
34
| 30.3
| 2.72
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.3
| 5.7
| 8.6
| 12.9
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.059
|
35
| 39
| 2.93
| false
| false
| false
| false
| false
| false
| true
| false
| false
| 1.8
| 5.7
| 9.3
| 13.7
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.002
|
36
| 37.5
| 3.53
| false
| false
| false
| true
| false
| false
| false
| false
| false
| 5.5
| 23.9
| null | null | true
| false
| false
| false
| true
| false
|
hypertonia
| true
|
spastic
|
bilateral
| 4
| 0.122
|
37
| 34.6
| 1.69
| true
| false
| false
| false
| false
| false
| false
| false
| false
| 2.2
| 6
| 5.4
| 10.9
| false
| true
| false
| false
| false
| false
| null | false
| null | null | null | 0.073
|
38
| 38.1
| 2.45
| true
| false
| false
| true
| false
| false
| false
| false
| false
| 2.7
| 4.6
| 6.9
| 12.3
| false
| false
| false
| false
| true
| false
| null | false
| null | null | null | 0.185
|
39
| 40
| 3.13
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.2
| 6.9
| 9.4
| 12
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
40
| 37
| 3.15
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.7
| 5.3
| 8.1
| 8.8
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
41
| 41
| 3.69
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.9
| 5.6
| 12.5
| 12.8
| false
| false
| false
| false
| true
| true
| null | false
| null | null | null | 0.003
|
42
| 34.7
| 2.7
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2
| 6.1
| 9
| 14.3
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.007
|
43
| 37.5
| 3.35
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2
| 5.4
| 8.7
| 11.7
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
44
| 38.5
| 3.71
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.5
| 5.9
| 10.9
| 14
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
45
| 38.4
| 3.41
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 3.1
| 5.5
| 6.7
| 11.7
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
46
| 37.4
| 2.94
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1
| 5.6
| 8.8
| 10.9
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
47
| 40
| 3.26
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.9
| 4.9
| 13.2
| 11.7
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
48
| 38.8
| 2.91
| false
| false
| false
| false
| false
| true
| false
| false
| false
| 2.9
| 4.4
| 9.2
| 11.6
| false
| false
| false
| true
| false
| false
| null | false
| null | null | null | 0.062
|
49
| 39.2
| 3.19
| false
| false
| false
| false
| false
| true
| false
| false
| false
| 2.5
| 8.5
| 6.7
| 9.1
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.062
|
50
| 39.3
| 3.69
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.3
| 6
| 7.1
| 15.2
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
51
| 39.8
| 3.48
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.3
| 5.1
| 8.7
| 10.9
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
52
| 39.8
| 3.23
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.2
| 6.1
| 7.5
| 15.1
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
53
| 38.6
| 3.48
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.3
| 6.9
| 7.5
| 11
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
54
| 38.2
| 3.19
| false
| false
| true
| false
| false
| false
| false
| false
| false
| 2.3
| 6.2
| 6.7
| 12.4
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.253
|
55
| 38
| 3.43
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2
| 6.7
| 7.8
| 11.7
| false
| false
| false
| true
| false
| false
| null | false
| null | null | null | 0.003
|
56
| 37.5
| 3.9
| false
| false
| false
| true
| false
| false
| false
| true
| false
| 2.9
| 8.5
| 19.4
| 24.5
| false
| false
| true
| true
| false
| false
|
variable
| true
|
choreoathetoid
|
generalized
| 2
| 0.122
|
57
| 41.7
| 3.02
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.7
| 7.2
| 7.6
| 15
| false
| false
| true
| false
| false
| false
| null | false
| null | null | null | 0.003
|
58
| 38.6
| 3.07
| false
| false
| false
| true
| false
| false
| false
| false
| false
| 2.1
| 6.8
| 14.2
| 15.1
| false
| true
| false
| true
| true
| false
|
hypertonia
| true
|
spastic
|
bilateral
| 1
| 0.122
|
59
| 38.3
| 2.5
| false
| false
| false
| true
| false
| false
| false
| false
| false
| 11.9
| 34.3
| null | null | false
| false
| false
| false
| true
| true
|
hypertonia
| true
|
spastic
|
bilateral
| 5
| 0.122
|
60
| 38.8
| 3.21
| false
| true
| false
| false
| false
| false
| false
| false
| false
| 2.4
| 6.2
| 8.1
| 10.7
| false
| true
| false
| false
| false
| false
| null | false
| null | null | null | 0.203
|
61
| 36.7
| 1.8
| true
| false
| false
| true
| false
| false
| false
| false
| false
| 2.2
| 7.4
| 7.8
| 10.7
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.193
|
62
| 38.9
| 3.25
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.7
| 5.8
| 9.9
| 11.8
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
63
| 28.1
| 2.85
| false
| true
| false
| false
| false
| false
| false
| false
| false
| 3.2
| 5.1
| 7.6
| 12.5
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.259
|
64
| 38.2
| 3.09
| false
| false
| false
| true
| false
| false
| false
| false
| false
| 2.2
| 6.2
| 10.6
| 16.3
| false
| true
| false
| false
| false
| false
| null | false
| null | null | null | 0.122
|
65
| 37.1
| 3.9
| false
| false
| false
| false
| false
| true
| false
| false
| false
| 2.6
| 6.8
| 6
| 12.1
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.062
|
66
| 38.4
| 3.67
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.7
| 6
| 8.2
| 12
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
67
| 38.2
| 3.01
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.9
| 7.9
| 9.8
| 9.2
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
68
| 39.8
| 2.73
| false
| true
| false
| false
| false
| true
| false
| false
| false
| 5.4
| 8.2
| 19.2
| 13.2
| false
| true
| true
| false
| true
| true
|
hypertonia
| true
|
spastic
|
bilateral
| 2
| 0.263
|
69
| 27.8
| 1.65
| true
| false
| true
| false
| false
| true
| false
| false
| false
| 2.2
| 7.4
| 9.3
| 13.7
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.545
|
70
| 40.5
| 3.48
| false
| false
| false
| true
| false
| true
| false
| false
| false
| 1.8
| 5.9
| 10
| 15
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.182
|
71
| 40.5
| 3.53
| false
| false
| false
| false
| false
| false
| true
| false
| false
| 2.6
| 5.7
| 5.6
| 12.8
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.002
|
72
| 30.8
| 1.76
| true
| false
| false
| false
| false
| false
| true
| false
| false
| 1.7
| 7.4
| 8.1
| 11.2
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.106
|
73
| 38.5
| 3.32
| false
| false
| false
| true
| false
| false
| false
| false
| false
| 3.1
| 5.7
| 9.4
| 10.5
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.122
|
74
| 38.6
| 3.24
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.6
| 7
| 9.5
| 10.8
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
75
| 25.9
| 1.34
| true
| false
| false
| true
| false
| false
| false
| false
| false
| 7.9
| 25.9
| null | null | true
| false
| true
| false
| true
| true
|
hypotonia
| true
|
ataxic
|
generalized
| 4
| 0.455
|
76
| 38.3
| 2.28
| true
| false
| false
| false
| false
| false
| false
| false
| false
| 2.8
| 6.4
| 7.7
| 14
| false
| false
| false
| true
| false
| false
| null | false
| null | null | null | 0.065
|
77
| 39.4
| 3.97
| false
| false
| false
| false
| true
| false
| false
| false
| false
| 1.1
| 8.3
| 8.2
| 12.7
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.152
|
78
| 38
| 3.01
| false
| false
| false
| false
| true
| false
| false
| false
| false
| 1.8
| 6.8
| 8.5
| 8.1
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.152
|
79
| 37.4
| 3.04
| false
| false
| false
| false
| true
| false
| false
| false
| false
| 10.1
| 42
| null | null | true
| true
| true
| false
| false
| false
|
hypertonia
| true
|
spastic
|
bilateral
| 5
| 0.152
|
80
| 39.2
| 3.85
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.9
| 6.8
| 9.6
| 12.2
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
81
| 40.1
| 3.1
| false
| false
| false
| true
| true
| false
| false
| false
| false
| 1.2
| 7.1
| 7
| 14.9
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.272
|
82
| 40.6
| 3.31
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.1
| 5.6
| 10.8
| 14
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
83
| 41.1
| 3.36
| false
| false
| true
| false
| false
| false
| true
| false
| false
| 1.8
| 4.8
| 7.3
| 12.7
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.151
|
84
| 39.2
| 3.1
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2
| 6.6
| 9.6
| 10.3
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
85
| 38.4
| 2.52
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.3
| 6.9
| 9.5
| 12.6
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
86
| 40.6
| 3.25
| false
| false
| true
| false
| false
| false
| false
| false
| false
| 3.9
| 7.3
| 7.1
| 17.9
| true
| true
| false
| false
| true
| true
|
hypertonia
| true
|
spastic
|
bilateral
| 1
| 0.253
|
87
| 38.9
| 3.44
| false
| false
| false
| true
| false
| false
| true
| false
| false
| 1.5
| 5.7
| 11.1
| 10.2
| false
| false
| false
| false
| true
| false
| null | false
| null | null | null | 0.073
|
88
| 34.1
| 2.43
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.5
| 6
| 7.7
| 13.2
| false
| false
| false
| false
| true
| false
| null | false
| null | null | null | 0.036
|
89
| 36.5
| 1.95
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.8
| 9.1
| 11.5
| 12.1
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.036
|
90
| 41.2
| 3.21
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.9
| 6
| 7.8
| 14.5
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
91
| 39
| 3.49
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2.6
| 4.8
| 7.8
| 14.3
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
92
| 39
| 3.28
| false
| false
| false
| false
| true
| false
| false
| false
| false
| 12
| 36
| null | null | false
| false
| true
| true
| true
| false
|
variable
| true
|
dystonic
|
generalized
| 5
| 0.152
|
93
| 36.4
| 2.89
| false
| false
| false
| true
| false
| false
| false
| false
| false
| 2.4
| 8.1
| 8.7
| 13
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.127
|
94
| 38.2
| 3.15
| false
| false
| false
| false
| false
| true
| false
| false
| false
| 2.2
| 7.3
| 8.6
| 6.4
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.062
|
95
| 39.6
| 3.41
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.7
| 6.3
| 10.3
| 12.4
| true
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
96
| 37.1
| 3.34
| false
| true
| false
| false
| false
| true
| false
| false
| false
| 5.3
| 24.4
| null | null | true
| false
| false
| false
| true
| false
|
hypotonia
| true
|
ataxic
|
generalized
| 4
| 0.263
|
97
| 40.4
| 2.72
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 2
| 5.7
| 8.9
| 11.4
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
98
| 40.3
| 4.43
| false
| false
| false
| false
| false
| false
| false
| false
| false
| 1.3
| 6.7
| 9.7
| 10.1
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.003
|
99
| 28.1
| 2.19
| false
| false
| false
| false
| false
| true
| false
| false
| false
| 2.8
| 5.1
| 8.8
| 12.4
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.148
|
100
| 38.4
| 4.17
| false
| false
| false
| true
| false
| false
| false
| false
| false
| 1.4
| 6.3
| 8.9
| 13.8
| false
| false
| false
| false
| false
| false
| null | false
| null | null | null | 0.122
|
African Cerebral Palsy Synthetic Dataset
A Literature-Informed Probabilistic Approach to CP Detection
Version: 1.0
Release Date: November 2025
Context: African Population Epidemiology
Task: Binary Classification (CP Detection) + Risk Probability Scoring
License: CC BY-NC 4.0 (Research & Educational Use)
Abstract
We present a suite of synthetic datasets for cerebral palsy (CP) detection in African populations, generated using literature-informed probabilistic modeling. The datasets incorporate region-specific risk factors, epidemiological patterns, and clinical presentations documented in recent peer-reviewed studies. With CP prevalence ranging from 2-10 per 1000 births in Africa—significantly higher than Western countries due to preventable causes—there is urgent need for detection tools. However, real-world data collection faces substantial barriers: resource constraints, diagnostic delays (12-24 months), and severe class imbalance. Our synthetic data generation approach bridges this gap, enabling prototype development while real data collection is planned. Nine datasets (3.1 MB total, 20,325 samples) provide varied configurations for algorithm development, including balanced sets, high-risk cohorts, and independent test sets. Models trained on these data are expected to achieve AUC-ROC >0.90 with appropriate handling of class imbalance, serving as proof-of-concept for grant applications and establishing baselines for eventual real-world validation.
Task Type: Binary Classification (has_cp: True/False) with probability scores for risk assessment
Keywords: Cerebral Palsy, Synthetic Data, African Health, Machine Learning, Binary Classification, Early Detection, Low-Resource Settings
1. Introduction
1.1 Clinical Context
Cerebral palsy affects 2-10 per 1000 births in Africa, with preventable causes (birth asphyxia 47.6%, kernicterus 23.8%) driving higher prevalence than Western populations [1,2]. Early detection enables intervention during critical developmental windows, yet diagnostic infrastructure remains concentrated in urban centers. Machine learning offers potential for accessible screening tools, but requires training data capturing African epidemiological patterns.
1.2 Data Collection Challenges
Real-world CP dataset construction faces:
- Temporal barriers: Diagnosis at 12-24 months requires longitudinal follow-up
- Resource constraints: Limited pediatric neurologists in sub-Saharan Africa
- Class imbalance: 2-3 per 1000 prevalence creates extreme positive class scarcity
- Ethical complexity: Vulnerable population research requires extensive IRB processes
1.3 Synthetic Data Rationale
We employ literature-informed synthetic generation as a scaffold for:
- Algorithm prototyping without waiting for longitudinal data collection
- Demonstration of feasibility for funding applications
- Identification of critical features to guide real data collection protocols
- Training team members before sensitive real data becomes available
This approach is explicitly not a replacement for real validation but an accelerant to deployment-ready tools.
2. Methodology
2.1 Generation Framework
Probabilistic Sampling with Clinical Constraints
We extract statistical distributions and conditional probabilities from published literature, then use Monte Carlo sampling to generate individual cases:
For each sample i:
1. GA_i ~ Bimodal(Preterm: N(32,3.5), Term: N(39,1.3))
2. BW_i ~ Conditional(GA_i)
3. Risk_factors_i ~ Bernoulli(p_African)
4. P(CP|features_i) = f(GA, BW, risk_factors)
5. CP_i ~ Bernoulli(P(CP|features_i))
6. If CP_i: Sample(type, severity, comorbidities)
2.2 African Population Parameters
Key differences from global distributions:
| Parameter | African | Global | Source |
|---|---|---|---|
| Preterm birth rate | 19% | 11% | Ghana CP register, 2024 |
| Birth asphyxia prevalence | 12% | 5% | Nigerian study, 2020 |
| Hyperbilirubinemia | 15% | 8% | Systematic reviews |
| CNS infections | 10% | 4% | African meta-analysis |
Additional factors: malaria with seizures (10% of CP cases), tuberculous meningitis (4%).
2.3 CP Probability Model
Additive/multiplicative risk calculation:
P_base = 0.0025 # Population baseline
# Gestational age (Norwegian cohort data):
if GA < 28 weeks: P += 0.085
elif GA < 31: P += 0.056
elif GA < 34: P += 0.020
elif GA < 37: P += 0.004
# Birth weight:
if BW < 1.5kg: P += 0.08
elif BW < 2.5kg: P += 0.03
# SGA (Slovenian OR 2.43):
if SGA: P *= 2.0
# Perinatal complications:
if birth_asphyxia: P += 0.20 (African) / 0.15 (Global)
if neonatal_seizures: P += 0.25
if hyperbilirubinemia: P += 0.12 (African) / 0.05 (Global)
# ... [additional factors]
P_final = min(P, 0.90) # Ceiling for realism
2.4 CP Classification
Type Distribution (Nigerian clinical data):
- Spastic: 70% (60% bilateral, 40% unilateral)
- Ataxic: 9.8%
- Dystonic: 4.6%
- Choreoathetoid: 7.5%
- Mixed: 8.1%
GMFCS Severity:
- Level I: 18.1%, Level II: 40.2%, Level III: 13.9%, Level IV: 13.9%, Level V: 13.9%
Motor Milestones: Delays proportional to severity (GMFCS I: 1.5×, II: 2.0×, III: 2.5×, IV: 4.0×, V: 6.0×)
2.5 Feature Set
30+ features across five categories:
- Demographics & Risk (10): GA, BW, SGA, asphyxia, seizures, infections, etc.
- African-Specific (2): Malaria, TB meningitis
- Motor Development (4): Head control, sitting, crawling, walking ages
- Comorbidities (6): Epilepsy, feeding, visual, hearing, speech, cognitive
- CP Classification (5): Type, subtype, GMFCS, tone, probability score
- Target:
has_cp(boolean)
3. Dataset Collection
3.1 Dataset Inventory
Nine datasets provide varied experimental configurations:
| Dataset | N | CP Cases | CP % | Use Case |
|---|---|---|---|---|
africa_cp_train_1000 |
1,000 | 94 | 9.4% | Rapid prototyping |
africa_cp_train_5000 |
5,000 | 500 | 10.0% | Main training |
africa_cp_train_10000 |
10,000 | 1,012 | 10.1% | Deep learning |
africa_cp_balanced_1000 |
1,000 | 500 | 50.0% | Class balance algorithms |
africa_cp_preterm_2000 |
2,000 | 327 | 16.4% | High-risk population |
africa_cp_cases_only_500 |
500 | 500 | 100% | Comorbidity analysis |
africa_cp_test_2000 |
2,000 | 219 | 11.0% | Hold-out validation |
cp_africa_1000_baseline |
1,000 | 90 | 9.0% | Reproducible baseline (seed 42) |
cp_africa_5000_large |
5,000 | 513 | 10.3% | Alternative realization (seed 2024) |
Critical: africa_cp_test_2000 uses different random seed (999) and must never be used for training.
3.2 Validation Against Literature
Generated datasets align with expected distributions:
| Metric | Expected | Generated | Status |
|---|---|---|---|
| CP prevalence | 2-10/1000 | 9-11% | ✓ |
| Preterm rate | 19% | 19.9-22.5% | ✓ |
| Spastic CP | ~70% | 64.9-73.3% | ✓ |
| GMFCS II (mode) | Highest | 37-41% | ✓ |
| CP in preterm | > term | 16.4% vs 9-10% | ✓ |
4. Model Training Protocol
4.1 Recommended Pipeline
Step 1: Data Preparation
import pandas as pd
from sklearn.model_selection import train_test_split
# Load training data
df = pd.read_csv('africa_cp_train_5000.csv')
# Select features (exclude ID, target, derived columns)
feature_cols = [
'gestational_age', 'birth_weight', 'is_sga',
'birth_asphyxia', 'neonatal_seizures', 'hyperbilirubinemia',
'neonatal_infection', 'maternal_infection', 'preclampsia',
'malaria_with_seizures', 'tuberculous_meningitis',
'head_control_age', 'sitting_age', # crawling/walking: many nulls
'epilepsy', 'feeding_difficulties', 'visual_impairment',
'hearing_impairment', 'speech_impairment', 'intellectual_disability'
]
X = df[feature_cols].fillna(999) # Flag for milestone not achieved
y = df['has_cp']
Step 2: Handle Class Imbalance
Choose one approach:
- Class weights:
class_weight='balanced'in sklearn - SMOTE: Oversample minority class
- Balanced dataset: Use
africa_cp_balanced_1000.csv - Threshold tuning: Optimize decision boundary post-training
Step 3: Model Selection
Recommended algorithms:
- Random Forest: Handles non-linear relationships, robust to correlated features
- XGBoost: Superior performance on imbalanced tabular data
- Logistic Regression: Interpretable baseline for clinical stakeholders
- Neural Network: For large dataset (10K samples)
Step 4: Cross-Validation
from sklearn.model_selection import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import roc_auc_score, classification_report
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
auc_scores = []
for fold, (train_idx, val_idx) in enumerate(cv.split(X, y)):
X_train, X_val = X.iloc[train_idx], X.iloc[val_idx]
y_train, y_val = y.iloc[train_idx], y.iloc[val_idx]
model = RandomForestClassifier(
n_estimators=100,
max_depth=10,
class_weight='balanced',
random_state=42
)
model.fit(X_train, y_train)
y_prob = model.predict_proba(X_val)[:, 1]
auc_scores.append(roc_auc_score(y_val, y_prob))
print(f"Mean CV AUC-ROC: {np.mean(auc_scores):.3f} ± {np.std(auc_scores):.3f}")
4.2 Hyperparameter Tuning
Focus on:
- Tree depth: 5-15 for Random Forest/XGBoost
- Number of estimators: 100-500
- Learning rate: 0.01-0.1 for gradient boosting
- Class weight: Balance vs focal loss for imbalanced data
Use validation set (20% hold-out) or cross-validation, never the test set.
5. Evaluation Protocol
5.1 Primary Metrics
Clinical Screening Context prioritizes sensitivity:
| Metric | Target | Rationale |
|---|---|---|
| Sensitivity (Recall) | ≥90% | Missing CP cases has high clinical cost |
| Specificity | ≥80% | Balance false positives vs resource use |
| AUC-ROC | ≥0.90 | Overall discriminative ability |
| AUC-PR | ≥0.70 | Better for imbalanced data than ROC |
Formula:
Sensitivity = TP / (TP + FN) # % of CP cases detected
Specificity = TN / (TN + FP) # % of non-CP correctly identified
5.2 Secondary Metrics
Calibration:
- Expected Calibration Error (ECE) < 0.1
- Brier Score < 0.15
- Reliability diagram: Predicted probabilities match observed frequencies
Subgroup Performance:
- Performance by GMFCS level (I-V)
- Performance by gestational age (<28, 28-31, 32-36, ≥37 weeks)
- Performance on preterm-only subset
5.3 Final Evaluation
Hold-Out Test Set (africa_cp_test_2000.csv):
# Load test set (different random seed)
test_df = pd.read_csv('africa_cp_test_2000.csv')
X_test = test_df[feature_cols].fillna(999)
y_test = test_df['has_cp']
# Predict
y_pred = final_model.predict(X_test)
y_prob = final_model.predict_proba(X_test)[:, 1]
# Comprehensive evaluation
from sklearn.metrics import classification_report, roc_auc_score, \
precision_recall_curve, confusion_matrix
print("="*60)
print("FINAL TEST SET PERFORMANCE")
print("="*60)
print(classification_report(y_test, y_pred, target_names=['No CP', 'CP']))
print(f"\nAUC-ROC: {roc_auc_score(y_test, y_prob):.3f}")
# Confusion matrix
tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()
print(f"\nConfusion Matrix:")
print(f" True Negatives: {tn}, False Positives: {fp}")
print(f" False Negatives: {fn}, True Positives: {tp}")
print(f" Sensitivity: {tp/(tp+fn):.3f}")
print(f" Specificity: {tn/(tn+fp):.3f}")
5.4 Feature Importance Analysis
# Extract feature importance
importance_df = pd.DataFrame({
'feature': feature_cols,
'importance': final_model.feature_importances_
}).sort_values('importance', ascending=False)
print("\nTop 10 Predictive Features:")
print(importance_df.head(10))
Expected top features: Gestational age, birth weight, birth asphyxia, motor milestone delays, neonatal seizures.
6. Expected Outcomes
6.1 Performance Benchmarks
Based on synthetic data characteristics:
Baseline Models (Logistic Regression):
- AUC-ROC: 0.85-0.88
- Sensitivity: 70-75%
- Specificity: 85-90%
Advanced Models (Random Forest, XGBoost):
- AUC-ROC: 0.90-0.95
- Sensitivity: 80-85%
- Specificity: 88-93%
Deep Learning (on 10K dataset):
- AUC-ROC: 0.92-0.96
- Sensitivity: 85-90%
- Specificity: 90-94%
6.2 Learning Curves
Performance expected to improve with data size:
| Dataset Size | Expected AUC-ROC | Notes |
|---|---|---|
| 1,000 | 0.88-0.91 | Good for prototyping |
| 5,000 | 0.91-0.94 | Recommended for development |
| 10,000 | 0.93-0.96 | Suitable for deep learning |
Diminishing returns beyond 10K for synthetic data; real data becomes critical.
6.3 Feature Importance Findings
Anticipated ranking:
- Gestational age: Strongest single predictor (risk gradient from 24-42 weeks)
- Birth asphyxia: High prevalence in African CP cases (47.6%)
- Motor milestone delays: Sitting age, head control age
- Neonatal seizures: Strong association with CP
- Birth weight / SGA: Conditional on gestational age
- Hyperbilirubinemia: African context-specific
- Comorbidities: Epilepsy, feeding difficulties (co-occurrence patterns)
6.4 Failure Modes
Expected challenges:
- High-functioning CP (GMFCS I): Subtle presentations harder to detect
- Late-onset milestones: Normal early development masking CP
- Comorbidity-driven predictions: Model may rely on comorbidities rather than root causes
- Preterm bias: May over-predict CP in preterm infants
Mitigation: Threshold tuning, stratified analysis, calibration post-processing.
7. Limitations & Appropriate Use
7.1 What These Datasets ARE
✅ Prototype training data for algorithm development
✅ Proof-of-concept for grant applications
✅ Feature engineering testbed to identify critical variables
✅ Sample size calculator for real data collection planning
✅ Training materials for team members
7.2 What These Datasets ARE NOT
❌ Clinical validation data: Cannot deploy models trained solely on synthetic data
❌ Capturing rare interactions: Complex multi-factor edge cases underrepresented
❌ Including video/movement data: General Movements Assessment (gold standard) not modeled
❌ Site-specific calibration: Individual hospitals have unique referral patterns
7.3 Mandatory Next Steps
Before clinical deployment:
- Phase 2 Pilot: Collect 50-100 real CP cases from African clinical sites
- Distribution Validation: Compare real vs synthetic risk factor prevalence
- Model Retraining: Train new models on real data
- Prospective Validation: Test in clinical setting vs gold standard diagnosis
- Regulatory Approval: Submit real-world evidence to appropriate authorities
7.4 Bias Considerations
Source literature bias:
- Most CP research from high-income countries
- African studies underrepresented
- Publication bias toward positive findings
Mitigation: Prioritized African studies where available, documented all sources, plan real-world validation.
8. Reproducibility
All datasets generated with documented random seeds:
| Dataset | Random Seed |
|---|---|
| Training sets (1K, 5K, 10K) | 100, 200, 300 |
| Balanced set | 400 |
| Preterm set | 500 |
| CP-only set | 600 |
| Test set | 999 |
| Baseline (1K) | 42 |
| Baseline (5K) | 2024 |
Re-run generate_africa_datasets.py --suite to reproduce exact datasets.
9. Citation & Acknowledgments
9.1 Dataset Citation
African Cerebral Palsy Synthetic Dataset (2025)
Literature-informed probabilistic generation for CP detection
Version 1.0, Generated November 2025
9.2 Primary Literature Sources
[1] Nigerian CP Clinical Features Study (2020) - CP type distribution, GMFCS
[2] Ghana CP Surveillance Register (2024) - Preterm birth prevalence
[3] Norwegian Medical Birth Registry - Gestational age risk curves (1.9M births)
[4] Slovenian Case-Control Study - SGA odds ratios
[5] African Systematic Reviews - Birth asphyxia, kernicterus, comorbidities
Full references in METHODOLOGY.md.
9.3 Code Availability
Generation code open-source:
cp_data_generator.py- Core probabilistic generatorgenerate_africa_datasets.py- Africa suite automation- Documentation:
METHODOLOGY.md,AFRICA_DATASETS_README.md
10. Contact & Support
Documentation: See QUICKSTART_AFRICA.md for hands-on tutorial
Issues: Verify parameters against METHODOLOGY.md
Updates: Dataset will be recalibrated after Phase 2 pilot data collection
Recommended Reading Order:
- This Dataset Card (overview)
QUICKSTART_AFRICA.md(get started in 10 minutes)METHODOLOGY.md(full scientific details)AFRICA_DATASETS_README.md(comprehensive dataset documentation)
Appendix: Quick Reference
Load Data:
import pandas as pd
train = pd.read_csv('africa_cp_train_5000.csv')
test = pd.read_csv('africa_cp_test_2000.csv')
Feature Columns (19 recommended):
features = ['gestational_age', 'birth_weight', 'is_sga', 'birth_asphyxia',
'neonatal_seizures', 'hyperbilirubinemia', 'neonatal_infection',
'maternal_infection', 'preclampsia', 'malaria_with_seizures',
'tuberculous_meningitis', 'head_control_age', 'sitting_age',
'epilepsy', 'feeding_difficulties', 'visual_impairment',
'hearing_impairment', 'speech_impairment', 'intellectual_disability']
Target: has_cp (boolean)
Handle Missing Values: Milestone ages (crawling, walking) may be null for severe CP → Replace with sentinel (e.g., 999)
Evaluation Metrics:
from sklearn.metrics import roc_auc_score, classification_report
auc = roc_auc_score(y_true, y_prob)
report = classification_report(y_true, y_pred, target_names=['No CP', 'CP'])
Expected Performance: AUC-ROC 0.90-0.95, Sensitivity 80-90%, Specificity 85-95%
Version: 1.0
Last Updated: November 5, 2025
Status: Research Use Only - Not Validated for Clinical Deployment
- Downloads last month
- 62