Datasets:
metadata
license: apache-2.0
tags:
- biology
- genomics
- dna
- eccdna
size_categories:
- 10K<n<1M
task_categories:
- token-classification
Real vs. Pseudo-eccDNA Discrimination (Homo sapiens)
This dataset supports the Real vs. Pseudo-eccDNA Discrimination task for human eccDNA.
The goal is to train models that can distinguish true eccDNA sequences from pseudo-eccDNAs
randomly extracted from linear genomic regions with matched length distributions.
Each entry contains:
sequence: raw eccDNA sequence (A/T/C/G)label:1→ Real eccDNA0→ Pseudo-eccDNA (negative control)
📁 Folder Structure
real_vs_pseudo_eccdna_discrimination_human/ ├── data/ │ └── real_vs_pseudo_eccdna_discrimination_human.csv └── README.md
Task Description
True eccDNAs are experimentally verified circular DNA molecules,
whereas pseudo-eccDNAs are generated by randomly extracting linear genomic segments
to match the true eccDNA length distribution.
This task assesses a model’s ability to capture circular topology and regulatory context
beyond simple sequence composition.
Citation
If you use this dataset, please cite:
@inproceedings{liu2025eccdnamamba,
title={eccDNAMamba: A Pre-Trained Model for Ultra-Long eccDNA Sequence Analysis},
author={Zhenke Liu and Jien Li and Ziqi Zhang},
booktitle={ICML 2025 GenBio Workshop},
year={2025},
url={https://openreview.net/forum?id=56xKN7KJjy}
}