|
|
--- |
|
|
license: cc-by-nc-sa-4.0 |
|
|
size_categories: |
|
|
- 10M<n<100M |
|
|
tags: |
|
|
- coyo |
|
|
- coyo-hd-11m-llavanext |
|
|
- sentence-transformers |
|
|
- images |
|
|
- image captions |
|
|
- embeddings |
|
|
--- |
|
|
|
|
|
*** |
|
|
|
|
|
# Sentence transformer (all_MiniLM_L6_v2) embeddings for all long llava summaries in coyo-hd-11m-llavanext dataset (07-03-2024 version) |
|
|
|
|
|
[Sentence Transformers](https://github.com/UKPLab/sentence-transformers) |
|
|
|
|
|
[coyo-hd-11m-llavanext](https://huggingface.co/datasets/CaptionEmporium/coyo-hd-11m-llavanext) |
|
|
|
|
|
*** |
|
|
|
|
|
# Instructions |
|
|
|
|
|
## PLEASE NOTE: You will need at least 40GB GPU to use the embeddings |
|
|
|
|
|
*** |
|
|
|
|
|
## Depencencies |
|
|
|
|
|
```python |
|
|
!pip install huggingface_hub -U |
|
|
!pip install datasets -U |
|
|
!pip install sentence-transformers -U |
|
|
``` |
|
|
|
|
|
## Imports |
|
|
|
|
|
```python |
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
from datasets import load_dataset |
|
|
|
|
|
from sentence_transformers import SentenceTransformer |
|
|
from sentence_transformers import util |
|
|
|
|
|
import torch |
|
|
import numpy as np |
|
|
|
|
|
import tqdm |
|
|
``` |
|
|
|
|
|
## coyo dataset and coyo dataset embeddings |
|
|
|
|
|
```python |
|
|
coyo_dataset = load_dataset("CaptionEmporium/coyo-hd-11m-llavanext") |
|
|
|
|
|
hf_hub_download(repo_id="asigalov61/coyo-hd-11m-llavanext-all-MiniLM-L6-v2", |
|
|
repo_type='dataset', |
|
|
filename="coyo_hd_11m_llavanext_all_MiniLM_L6_v2_llava_captions_embeddings_07_03_24.npz", |
|
|
local_dir='.' |
|
|
) |
|
|
``` |
|
|
|
|
|
## Loading code |
|
|
|
|
|
```python |
|
|
coyo_embeddings_cpu = np.load('coyo_hd_11m_llavanext_all_MiniLM_L6_v2_llava_captions_embeddings_07_03_24.npz')['data'] |
|
|
|
|
|
coyo_embeddings_cpu = torch.from_numpy(coyo_embeddings_cpu).cuda() |
|
|
coyo_embeddings_cpu = util.normalize_embeddings(coyo_embeddings_cpu) |
|
|
|
|
|
model = SentenceTransformer('all-MiniLM-L6-v2', device='cuda') |
|
|
``` |
|
|
|
|
|
## Inference code |
|
|
|
|
|
```python |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
queries_corpus = ['Capital of France', |
|
|
'Love, peace and happiness', |
|
|
'Cute cats in tacky suits :)' |
|
|
] |
|
|
|
|
|
queries_embeddings = model.encode(queries_corpus, device='cuda', show_progress_bar=True, convert_to_tensor=True) |
|
|
queries_embeddings = util.normalize_embeddings(queries_embeddings) |
|
|
|
|
|
results = util.semantic_search(queries_embeddings, coyo_embeddings_cpu, score_function=util.dot_score) |
|
|
|
|
|
closest_index = results[0][0]['corpus_id'] |
|
|
|
|
|
print('=' * 70) |
|
|
print('Best match index:', closest_index) |
|
|
print('=' * 70) |
|
|
print('Best match corpus entry:', coyo_dataset['train'][closest_index]) |
|
|
print('=' * 70) |
|
|
``` |
|
|
|
|
|
*** |
|
|
|
|
|
### Project Los Angeles |
|
|
### Tegridy Code 2024 |