Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
id: string
metadata: struct<cc_dump: string, dolma2_qc: struct<0: double, 1: double>, exact_duplicates: int64, lang: struct<en: double>, madlad: struct<num_sentences: int64, rule.2: list<item: int64>, rule.5: list<item: int64>, status: string>, minhash: null, original_word_count: int64, sa_remove_ranges: list<item: null>, text_hash: string, warc_content_type: string, warc_date: string, warc_url: string, weborganizer: struct<__label__adult_content: double, __label__crime_and_law: double, __label__entertainment: double, __label__finance_and_business: double, __label__games: double, __label__home_and_hobbies: double, __label__science_math_and_technology: double, __label__social_life: double, __label__software: double, __label__software_development: double, __label__art_and_design: double, __label__education_and_jobs: double, __label__fashion_and_beauty: double, __label__health: double, __label__literature: double, __label__sports_and_fitness: double>, weborganizer_max: string>
text: string
vs
id: string
metadata: struct<cc_dump: string, dolma2_qc: struct<0: double, 1: double>, exact_duplicates: int64, lang: struct<en: double>, madlad: struct<num_sentences: int64, rule.2: list<item: int64>, rule.5: list<item: int64>, status: string>, minhash: struct<cc_id: int64, cc_idx: int64, cc_size: int64>, original_word_count: int64, sa_remove_ranges: list<item: list<item: int64>>, text_hash: string, warc_content_type: string, warc_date: string, warc_url: string, weborganizer: struct<__label__adult_content: double, __label__art_and_design: double, __label__crime_and_law: double, __label__entertainment: double, __label__fashion_and_beauty: double, __label__food_and_dining: double, __label__games: double, __label__health: double, __label__home_and_hobbies: double, __label__social_life: double, __label__electronics_and_hardare: double, __label__literature: double, __label__sports_and_fitness: double, __label__education_and_jobs: double, __label__finance_and_business: double, __label__industrial: double, __label__software: double, __label__science_math_and_technology: double, __label__transportation: double, __label__software_development: double, __label__travel_and_tourism: double, __label__religion: double, __label__history_and_geography: double, __label__politics: double>, weborganizer_max: string>
text: string
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 246, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 547, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              id: string
              metadata: struct<cc_dump: string, dolma2_qc: struct<0: double, 1: double>, exact_duplicates: int64, lang: struct<en: double>, madlad: struct<num_sentences: int64, rule.2: list<item: int64>, rule.5: list<item: int64>, status: string>, minhash: null, original_word_count: int64, sa_remove_ranges: list<item: null>, text_hash: string, warc_content_type: string, warc_date: string, warc_url: string, weborganizer: struct<__label__adult_content: double, __label__crime_and_law: double, __label__entertainment: double, __label__finance_and_business: double, __label__games: double, __label__home_and_hobbies: double, __label__science_math_and_technology: double, __label__social_life: double, __label__software: double, __label__software_development: double, __label__art_and_design: double, __label__education_and_jobs: double, __label__fashion_and_beauty: double, __label__health: double, __label__literature: double, __label__sports_and_fitness: double>, weborganizer_max: string>
              text: string
              vs
              id: string
              metadata: struct<cc_dump: string, dolma2_qc: struct<0: double, 1: double>, exact_duplicates: int64, lang: struct<en: double>, madlad: struct<num_sentences: int64, rule.2: list<item: int64>, rule.5: list<item: int64>, status: string>, minhash: struct<cc_id: int64, cc_idx: int64, cc_size: int64>, original_word_count: int64, sa_remove_ranges: list<item: list<item: int64>>, text_hash: string, warc_content_type: string, warc_date: string, warc_url: string, weborganizer: struct<__label__adult_content: double, __label__art_and_design: double, __label__crime_and_law: double, __label__entertainment: double, __label__fashion_and_beauty: double, __label__food_and_dining: double, __label__games: double, __label__health: double, __label__home_and_hobbies: double, __label__social_life: double, __label__electronics_and_hardare: double, __label__literature: double, __label__sports_and_fitness: double, __label__education_and_jobs: double, __label__finance_and_business: double, __label__industrial: double, __label__software: double, __label__science_math_and_technology: double, __label__transportation: double, __label__software_development: double, __label__travel_and_tourism: double, __label__religion: double, __label__history_and_geography: double, __label__politics: double>, weborganizer_max: string>
              text: string

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

logo for the mix for Dolma 3

Dolma 3 Sample: 150B Mix

Dataset Sources

Sample of data for 1Bx5C and 7Bx1B. For the full Dolma 3 pool, see: https://huggingface.co/datasets/allenai/dolma3

Name Tokens Documents License
Common Crawl 118.8B 9.67B ODC-BY
olmOCR Science PDFs 18.2B 101M ODC-BY
StackEdu (Rebalanced) 11.0B 167M ODC-BY
FineMath 3+ 4.0B 21.4M ODC-BY
arXiv 1.3B 3.95M ODC-BY
Wikipedia & Wikibooks 63.5M 6.67M ODC-BY
Total 153.3B 10.0B

Licensing Information

Dolma 3 is licensed under the Open Data Commons Attribution License v1.0 (ODC-By). It is intended for research and educational use. For more information, please see our Responsible Use Guidelines.

Citation

A technical manuscript is forthcoming!

Downloads last month
57

Collection including allenai/dolma3_mix-150B-1025