Datasets:
id
string | image
image | height
float64 | weight
float64 | gender
int64 | age
int64 |
|---|---|---|---|---|---|
3841
| 155.448
| 62
| 1
| 39
|
|
2919
| 182.88
| 78
| 0
| 40
|
|
3081
| 176.784
| 65
| 1
| 47
|
|
9290
| 170.688
| 53
| 1
| 40
|
|
9151
| 167.64
| 52
| 1
| 39
|
|
7063
| 173.736
| 55
| 1
| 46
|
|
6429
| 192.024
| 100
| 0
| 45
|
|
508
| 216.408
| 120
| 0
| 38
|
|
4012
| 170.688
| 57
| 1
| 46
|
|
4122
| 179.832
| 70
| 0
| 30
|
|
390
| 182.88
| 93
| 0
| 37
|
|
3083
| 176.784
| 46
| 1
| 35
|
|
782
| 155.448
| 83
| 0
| 50
|
|
817
| 155.448
| 57
| 1
| 45
|
|
7930
| 195.072
| 88
| 0
| 36
|
|
8480
| 155.448
| 84
| 0
| 59
|
|
8268
| -1
| -1
| 0
| 47
|
|
2734
| 155.448
| 40
| 1
| 38
|
|
8068
| 188.976
| 85
| 0
| 50
|
|
2410
| 213.36
| 127
| 0
| 30
|
|
2656
| 182.88
| 75
| 0
| 31
|
|
1934
| 155.448
| 51
| 1
| 32
|
|
5542
| 164.592
| 68
| 1
| 50
|
|
3816
| 155.7528
| 76
| 0
| 47
|
|
1879
| 155.7528
| 77
| 0
| 32
|
|
6486
| 170.688
| 60
| 1
| 48
|
|
5792
| 173.736
| 60
| 1
| 42
|
|
7583
| 179.832
| 73
| 0
| 43
|
|
6251
| 176.784
| 57
| 1
| 43
|
|
3553
| 161.544
| 50
| 1
| 45
|
|
5154
| 167.64
| 50
| 1
| 33
|
|
1093
| 173.736
| 63
| 1
| 60
|
|
9404
| 179.832
| 77
| 0
| 51
|
|
6910
| 179.832
| 49
| 1
| 40
|
|
1799
| 170.688
| 100
| 0
| 53
|
|
2212
| 167.64
| 51
| 1
| 48
|
|
5537
| 176.784
| 55
| 1
| 57
|
|
8015
| 182.88
| 88
| 0
| 41
|
|
1800
| 188.976
| 88
| 0
| 30
|
|
6268
| 179.832
| 52
| 1
| 53
|
|
408
| 164.592
| 55
| 1
| 72
|
|
911
| 155.448
| 86
| 0
| 54
|
|
8833
| 164.592
| 50
| 1
| 49
|
|
6055
| 155.7528
| 76
| 0
| 59
|
|
7560
| 182.88
| 82
| 0
| 59
|
|
9391
| 170.688
| 70
| 0
| 48
|
|
4101
| 179.832
| 70
| 0
| 60
|
|
7409
| 167.64
| 52
| 1
| 39
|
|
9371
| 173.736
| 55
| 1
| 36
|
|
7448
| 170.688
| 54
| 1
| 38
|
|
472
| 161.544
| 54
| 1
| 43
|
|
7877
| -1
| -1
| 0
| 46
|
|
5428
| 173.736
| 57
| 1
| 36
|
|
3614
| 155.7528
| 58
| 1
| 48
|
|
2806
| 173.736
| 65
| 0
| 47
|
|
6305
| 173.736
| -1
| 0
| 26
|
|
7961
| 155.7528
| 84
| 0
| 42
|
|
7703
| 155.448
| 49
| 1
| 28
|
|
7379
| 170.688
| 67
| 1
| 50
|
|
4107
| 195.072
| 85
| 0
| 38
|
|
2533
| 192.024
| 98
| 0
| 60
|
|
9115
| 155.7528
| 54
| 1
| 38
|
|
1640
| 188.976
| 79
| 0
| 35
|
|
5438
| 161.544
| 50
| 1
| 39
|
|
7613
| -1
| -1
| 0
| 44
|
|
9080
| 164.592
| 50
| 1
| 44
|
|
5787
| 176.784
| -1
| 1
| 42
|
|
1115
| 179.832
| 83
| 0
| 38
|
|
8302
| 164.592
| -1
| 1
| 53
|
|
5064
| 173.736
| 64
| 0
| 37
|
|
967
| 173.736
| 78
| 0
| 46
|
|
5508
| -1
| -1
| 1
| 46
|
|
8258
| 176.784
| 57
| 1
| 45
|
|
7396
| 170.688
| 56
| 1
| 40
|
|
7383
| 188.976
| 98
| 0
| 39
|
|
6731
| -1
| -1
| 0
| 20
|
|
3752
| 176.784
| 57
| 1
| 35
|
|
7399
| 155.448
| 73
| 0
| 26
|
|
7562
| 170.688
| 56
| 1
| 35
|
|
3092
| 170.688
| 56
| 1
| 32
|
|
7200
| -1
| -1
| 0
| 27
|
|
2011
| 179.832
| 58
| 1
| 29
|
|
5208
| 167.64
| -1
| 1
| 41
|
|
5910
| 164.592
| 56
| 1
| 41
|
|
6671
| -1
| -1
| 0
| 37
|
|
8189
| 176.784
| 64
| 0
| 27
|
|
6549
| 155.448
| 43
| 1
| 34
|
|
3795
| 170.688
| 43
| 1
| 40
|
|
5675
| 195.072
| -1
| 0
| 39
|
|
203
| 170.688
| 54
| 1
| 37
|
|
8896
| 170.688
| 54
| 1
| 38
|
|
7725
| 155.7528
| 75
| 0
| 38
|
|
1103
| 182.88
| 77
| 0
| 41
|
|
2993
| 179.832
| 57
| 1
| 44
|
|
1990
| 155.7528
| 59
| 1
| 43
|
|
2230
| 164.592
| 52
| 1
| 60
|
|
9325
| 185.928
| 93
| 0
| 41
|
|
4099
| 167.64
| 56
| 1
| 31
|
|
6338
| 188.976
| 82
| 0
| 43
|
|
2164
| 170.688
| 65
| 1
| 73
|
Celeb-FBI: Celebrity Full Body Images Dataset
A cleaned and restructured version of the Celeb-FBI dataset containing 7,208 full-body celebrity images with annotations for height, weight, age, and gender.
Dataset Description
This dataset consists of worldwide celebrity images captured in standing, front-facing positions. It is designed for research on human attribute estimation from full-body images, including height, weight, age, and gender prediction tasks.
Dataset Structure
DatasetDict({
train: Dataset({
features: ['id', 'image', 'height', 'weight', 'gender', 'age'],
num_rows: 6487
})
test: Dataset({
features: ['id', 'image', 'height', 'weight', 'gender', 'age'],
num_rows: 721
})
})
Features
| Feature | Type | Description |
|---|---|---|
id |
int | Unique identifier for the image |
image |
Image | Full-body celebrity photograph |
height |
float | Height in centimeters (-1 if missing/invalid) |
weight |
float | Weight in kilograms (-1 if missing/invalid) |
gender |
int | 0 = Male, 1 = Female |
age |
int | Age in years (-1 if missing/invalid) |
Statistics
| Attribute | Min | Max | Mean | Valid Samples |
|---|---|---|---|---|
| Height | 79 cm | 259 cm | 170 cm | ~6,100 |
| Weight | 38 kg | 202 kg | 66 kg | ~5,300 |
| Age | 14 | 97 | 42 | ~6,500 |
| Gender | — | — | 61% F | 7,208 |
Data Processing
This version of the dataset includes several improvements over the original:
Cleaning steps applied:
- Converted height from feet to centimeters for standardization
- Removed implausible values (e.g., heights outside reasonable human range)
- Missing or invalid values are encoded as
-1 - Fixed typos in original annotations
- Manual corrections for identified mislabeled samples
Train/test split:
- Stratified 90/10 split based on height, age, weight buckets, and gender
- Ensures balanced representation across attribute combinations
Note: Approximately 14% of samples have at least one missing or invalid attribute value (marked as -1). The dataset contains some noise in annotations—users should account for this in their applications.
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("alecccdd/celeb-fbi")
# Access training data
train_data = dataset["train"]
# Example: iterate over samples
for sample in train_data:
image = sample["image"]
height = sample["height"] # in cm, -1 if missing
weight = sample["weight"] # in kg, -1 if missing
gender = sample["gender"] # 0=male, 1=female
age = sample["age"] # -1 if missing
# Filter valid samples for a specific attribute
valid_height_samples = train_data.filter(lambda x: x["height"] != -1)
Intended Uses
- Human attribute estimation research (height, weight, age, gender)
- Multi-task learning on human body images
- Benchmarking computer vision models for biometric prediction
- Study of visual cues for physical attribute estimation
Limitations
- Images are of celebrities and may not represent the general population
- Annotation accuracy depends on publicly available biographical data
- Some noise exists in the annotations; manual corrections were applied where identified but the dataset is not exhaustively verified
- Limited age range representation at extremes (few samples under 20 or over 80)
- Height and weight distributions may reflect celebrity demographics
Ethical Considerations
This dataset uses publicly available images of celebrities. Users should be mindful of:
- Privacy implications when developing attribute estimation systems
- Potential biases in celebrity image datasets
- Responsible use in downstream applications
Citation
If you use this dataset, please cite the original paper:
@misc{debnath2024celebfbibenchmarkdatasethuman,
title={Celeb-FBI: A Benchmark Dataset on Human Full Body Images and Age, Gender, Height and Weight Estimation using Deep Learning Approach},
author={Pronay Debnath and Usafa Akther Rifa and Busra Kamal Rafa and Ali Haider Talukder Akib and Md. Aminur Rahman},
year={2024},
eprint={2407.03486},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.03486},
}
Paper: arXiv:2407.03486
- Downloads last month
- 96