Dataset Viewer
Auto-converted to Parquet Duplicate
id
string
image
image
height
float64
weight
float64
gender
int64
age
int64
3841
155.448
62
1
39
2919
182.88
78
0
40
3081
176.784
65
1
47
9290
170.688
53
1
40
9151
167.64
52
1
39
7063
173.736
55
1
46
6429
192.024
100
0
45
508
216.408
120
0
38
4012
170.688
57
1
46
4122
179.832
70
0
30
390
182.88
93
0
37
3083
176.784
46
1
35
782
155.448
83
0
50
817
155.448
57
1
45
7930
195.072
88
0
36
8480
155.448
84
0
59
8268
-1
-1
0
47
2734
155.448
40
1
38
8068
188.976
85
0
50
2410
213.36
127
0
30
2656
182.88
75
0
31
1934
155.448
51
1
32
5542
164.592
68
1
50
3816
155.7528
76
0
47
1879
155.7528
77
0
32
6486
170.688
60
1
48
5792
173.736
60
1
42
7583
179.832
73
0
43
6251
176.784
57
1
43
3553
161.544
50
1
45
5154
167.64
50
1
33
1093
173.736
63
1
60
9404
179.832
77
0
51
6910
179.832
49
1
40
1799
170.688
100
0
53
2212
167.64
51
1
48
5537
176.784
55
1
57
8015
182.88
88
0
41
1800
188.976
88
0
30
6268
179.832
52
1
53
408
164.592
55
1
72
911
155.448
86
0
54
8833
164.592
50
1
49
6055
155.7528
76
0
59
7560
182.88
82
0
59
9391
170.688
70
0
48
4101
179.832
70
0
60
7409
167.64
52
1
39
9371
173.736
55
1
36
7448
170.688
54
1
38
472
161.544
54
1
43
7877
-1
-1
0
46
5428
173.736
57
1
36
3614
155.7528
58
1
48
2806
173.736
65
0
47
6305
173.736
-1
0
26
7961
155.7528
84
0
42
7703
155.448
49
1
28
7379
170.688
67
1
50
4107
195.072
85
0
38
2533
192.024
98
0
60
9115
155.7528
54
1
38
1640
188.976
79
0
35
5438
161.544
50
1
39
7613
-1
-1
0
44
9080
164.592
50
1
44
5787
176.784
-1
1
42
1115
179.832
83
0
38
8302
164.592
-1
1
53
5064
173.736
64
0
37
967
173.736
78
0
46
5508
-1
-1
1
46
8258
176.784
57
1
45
7396
170.688
56
1
40
7383
188.976
98
0
39
6731
-1
-1
0
20
3752
176.784
57
1
35
7399
155.448
73
0
26
7562
170.688
56
1
35
3092
170.688
56
1
32
7200
-1
-1
0
27
2011
179.832
58
1
29
5208
167.64
-1
1
41
5910
164.592
56
1
41
6671
-1
-1
0
37
8189
176.784
64
0
27
6549
155.448
43
1
34
3795
170.688
43
1
40
5675
195.072
-1
0
39
203
170.688
54
1
37
8896
170.688
54
1
38
7725
155.7528
75
0
38
1103
182.88
77
0
41
2993
179.832
57
1
44
1990
155.7528
59
1
43
2230
164.592
52
1
60
9325
185.928
93
0
41
4099
167.64
56
1
31
6338
188.976
82
0
43
2164
170.688
65
1
73
End of preview. Expand in Data Studio

Celeb-FBI: Celebrity Full Body Images Dataset

A cleaned and restructured version of the Celeb-FBI dataset containing 7,208 full-body celebrity images with annotations for height, weight, age, and gender.

Dataset Description

This dataset consists of worldwide celebrity images captured in standing, front-facing positions. It is designed for research on human attribute estimation from full-body images, including height, weight, age, and gender prediction tasks.

Dataset Structure

DatasetDict({
    train: Dataset({
        features: ['id', 'image', 'height', 'weight', 'gender', 'age'],
        num_rows: 6487
    })
    test: Dataset({
        features: ['id', 'image', 'height', 'weight', 'gender', 'age'],
        num_rows: 721
    })
})

Features

Feature Type Description
id int Unique identifier for the image
image Image Full-body celebrity photograph
height float Height in centimeters (-1 if missing/invalid)
weight float Weight in kilograms (-1 if missing/invalid)
gender int 0 = Male, 1 = Female
age int Age in years (-1 if missing/invalid)

Statistics

Attribute Min Max Mean Valid Samples
Height 79 cm 259 cm 170 cm ~6,100
Weight 38 kg 202 kg 66 kg ~5,300
Age 14 97 42 ~6,500
Gender 61% F 7,208

Data Processing

This version of the dataset includes several improvements over the original:

Cleaning steps applied:

  • Converted height from feet to centimeters for standardization
  • Removed implausible values (e.g., heights outside reasonable human range)
  • Missing or invalid values are encoded as -1
  • Fixed typos in original annotations
  • Manual corrections for identified mislabeled samples

Train/test split:

  • Stratified 90/10 split based on height, age, weight buckets, and gender
  • Ensures balanced representation across attribute combinations

Note: Approximately 14% of samples have at least one missing or invalid attribute value (marked as -1). The dataset contains some noise in annotations—users should account for this in their applications.

Usage

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("alecccdd/celeb-fbi")

# Access training data
train_data = dataset["train"]

# Example: iterate over samples
for sample in train_data:
    image = sample["image"]
    height = sample["height"]  # in cm, -1 if missing
    weight = sample["weight"]  # in kg, -1 if missing
    gender = sample["gender"]  # 0=male, 1=female
    age = sample["age"]        # -1 if missing
    
# Filter valid samples for a specific attribute
valid_height_samples = train_data.filter(lambda x: x["height"] != -1)

Intended Uses

  • Human attribute estimation research (height, weight, age, gender)
  • Multi-task learning on human body images
  • Benchmarking computer vision models for biometric prediction
  • Study of visual cues for physical attribute estimation

Limitations

  • Images are of celebrities and may not represent the general population
  • Annotation accuracy depends on publicly available biographical data
  • Some noise exists in the annotations; manual corrections were applied where identified but the dataset is not exhaustively verified
  • Limited age range representation at extremes (few samples under 20 or over 80)
  • Height and weight distributions may reflect celebrity demographics

Ethical Considerations

This dataset uses publicly available images of celebrities. Users should be mindful of:

  • Privacy implications when developing attribute estimation systems
  • Potential biases in celebrity image datasets
  • Responsible use in downstream applications

Citation

If you use this dataset, please cite the original paper:

@misc{debnath2024celebfbibenchmarkdatasethuman,
      title={Celeb-FBI: A Benchmark Dataset on Human Full Body Images and Age, Gender, Height and Weight Estimation using Deep Learning Approach}, 
      author={Pronay Debnath and Usafa Akther Rifa and Busra Kamal Rafa and Ali Haider Talukder Akib and Md. Aminur Rahman},
      year={2024},
      eprint={2407.03486},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2407.03486}, 
}

Paper: arXiv:2407.03486

Downloads last month
96