Datasets:
The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: RuntimeError
Message: Dataset scripts are no longer supported, but found TruckV2X.py
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 989, in dataset_module_factory
raise RuntimeError(f"Dataset scripts are no longer supported, but found {filename}")
RuntimeError: Dataset scripts are no longer supported, but found TruckV2X.pyNeed help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
TruckV2X: A Truck-Centered Perception Dataset
TruckV2X is the first large-scale truck-centered cooperative perception dataset, designed to address unique perception challenges in autonomous trucking (e.g., extensive blind spots, occlusions from large vehicle sizes, and dynamic trailer movements). It features multi-modal sensing (LiDAR and cameras) and supports multi-agent cooperation, including interactions between tractors, trailers, connected and automated vehicles (CAVs), and road-side units (RSUs). This dataset establishes performance benchmarks for heavy-duty vehicle scenarios and accelerates research on multi-agent autonomous trucking systems.
Usage Instructions
Option 1: Load via Hugging Face Hub
You can directly load the dataset using the datasets library for quick experimentation or exploration:
from datasets import load_dataset
dataset = load_dataset("XieTenghu1/TruckV2X", trust_remote_code=True)
# For security reasons, π€ Datasets do not allow running dataset loading scripts by default,
# and you have to pass trust_remote_code=True to load datasets that require running a dataset script.
Note: This method may be more user-friendly and convenient for quick access, but it does not expose the raw file structure, which is required by downstream frameworks like OpenCOOD for direct usage.
Option 2: Clone + Local Extraction (Recommended)
For full flexibility and seamless integration with cooperative perception frameworks (e.g., OpenCOOD), we strongly recommend downloading and using the dataset locally:
# Clone the dataset repository
git lfs install
git clone https://huggingface.co/datasets/XieTenghu1/TruckV2X
cd TruckV2X
# Unzip all splits (each Town is separately zipped)
# Unzip all zip files under train/
for zipfile in train/*.zip; do
dirname="${zipfile%.zip}"
unzip "$zipfile" -d "$dirname"
done
# Unzip all zip files under val/
for zipfile in val/*.zip; do
dirname="${zipfile%.zip}"
unzip "$zipfile" -d "$dirname"
done
# Unzip all zip files under test/
for zipfile in test/*.zip; do
dirname="${zipfile%.zip}"
unzip "$zipfile" -d "$dirname"
done
Dataset Structure
The dataset is organized into training, validation and testing subsets with the following structure:
TruckV2X/
βββ train/
β βββ Town1_1/
β β βββ cav/
β β β βββ 000000_camera0.jpg
β β β βββ 000000_camera1.jpg
β β β βββ 000000_camera2.jpg
β β β βββ 000000_camera3.jpg
β β β βββ 000000_lidar0.pcd
β β β βββ 000000.yaml
β β β βββ 000001_xxx
β β β βββ ...
β β βββ roadside/
β β β βββ 000000_camera0.jpg
β β β βββ 000000_camera1.jpg
β β β βββ 000000.yaml
β β β βββ 000001_xxx
β β β βββ ...
β β βββ tractor/
β β β βββ 000000_camera0.jpg
β β β βββ 000000_camera1.jpg
β β β βββ 000000_camera2.jpg
β β β βββ 000000_camera3.jpg
β β β βββ 000000_camera4.jpg
β β β βββ 000000_lidar0.pcd
β β β βββ 000000_lidar1.pcd
β β β βββ 000000.yaml
β β β βββ 000001_xxx
β β β βββ ...
β β βββ trailer/
β β β βββ 000000_camera0.jpg
β β β βββ 000000_camera1.jpg
β β β βββ 000000_camera2.jpg
β β β βββ 000000_camera3.jpg
β β β βββ 000000_camera4.jpg
β β β βββ 000000_lidar0.pcd
β β β βββ 000000_lidar1.pcd
β β β βββ 000000.yaml
β β β βββ 000001_xxx
β β β βββ ...
β βββ Town1_4/
β βββ ...
βββ val/
β βββ Town3_0/
β βββ ...
βββ test/
β βββ Town1_0/
β βββ ...
License
This dataset is licensed under the MIT License.
Citation
If you use TruckV2X or find our work inspiring in your research, please cite our paper:
@ARTICLE{11096563,
author={Xie, Tenghui and Song, Zhiying and Wen, Fuxi and Li, Jun and Liu, Guangzhao and Zhao, Zijian},
journal={IEEE Robotics and Automation Letters},
title={TruckV2X: A Truck-Centered Perception Dataset},
year={2025},
volume={10},
number={9},
pages={9312-9319},
keywords={Agricultural machinery;Laser radar;Cameras;Robot sensing systems;Roads;Vehicle dynamics;Sensors;Safety;Vehicle-to-infrastructure;Training;Vehicle-to-everything;cooperative perception;autonomous trucking;dataset},
doi={10.1109/LRA.2025.3592884}}
- Downloads last month
- 1,641