Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    AttributeError
Message:      'str' object has no attribute 'items'
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1068, in get_module
                  {
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1069, in <dictcomp>
                  config_name: DatasetInfo.from_dict(dataset_info_dict)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 284, in from_dict
                  return cls(**{k: v for k, v in dataset_info_dict.items() if k in field_names})
              AttributeError: 'str' object has no attribute 'items'

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

OntoLearner

General Knowledge Domain Ontologies

Overview

The general knowledge domain encompasses broad-scope ontologies and upper vocabularies designed for cross-disciplinary semantic modeling and knowledge representation. This domain is pivotal in facilitating interoperability and data integration across diverse fields by providing a foundational framework for organizing and linking information. Its significance lies in enabling the seamless exchange and understanding of knowledge across varied contexts, thereby supporting advanced data analysis, information retrieval, and decision-making processes.

Ontologies

Ontology ID Full Name Classes Properties Last Updated
CCO Common Core Ontologies (CCO) 1539 277 2024-11-06
DBpedia DBpedia Ontology (DBpedia) 790 3029 2008-11-17
DublinCore Dublin Core Vocabulary (DublinCore) 11 0 February 17, 2017
EDAM The ontology of data analysis and management (EDAM) 3513 12 24.09.2024
GIST GIST Upper Ontology (GIST) 199 113 2024-Feb-27
IAO Information Artifact Ontology (IAO) 292 57 2022-11-07
PROV PROV Ontology (PROV-O) 39 50 2013-04-30
RO Relation Ontology (RO) 88 673 2024-04-24
SchemaOrg Schema.org Ontology (SchemaOrg) 3881 1485 2024-11-22
UMBEL Upper Mapping and Binding Exchange Layer Vocabulary (UMBEL) 99 42 May 10, 2016
YAGO YAGO Ontology (YAGO) N/A N/A April, 2024

Dataset Files

Each ontology directory contains the following files:

  1. <ontology_id>.<format> - The original ontology file
  2. term_typings.json - A Dataset of term-to-type mappings
  3. taxonomies.json - Dataset of taxonomic relations
  4. non_taxonomic_relations.json - Dataset of non-taxonomic relations
  5. <ontology_id>.rst - Documentation describing the ontology

Usage

These datasets are intended for ontology learning research and applications. Here's how to use them with OntoLearner:

First of all, install the OntoLearner library via PiP:

pip install ontolearner

How to load an ontology or LLM4OL Paradigm tasks datasets?

from ontolearner import CCO

ontology = CCO()

# Load an ontology.
ontology.load()  

# Load (or extract) LLMs4OL Paradigm tasks datasets
data = ontology.extract()

How use the loaded dataset for LLM4OL Paradigm task settings?

# Import core modules from the OntoLearner library
from ontolearner import CCO, LearnerPipeline, train_test_split

# Load the CCO ontology, which contains concepts related to wines, their properties, and categories
ontology = CCO()
ontology.load()  # Load entities, types, and structured term annotations from the ontology
data = ontology.extract()

# Split into train and test sets
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)

# Initialize a multi-component learning pipeline (retriever + LLM)
# This configuration enables a Retrieval-Augmented Generation (RAG) setup
pipeline = LearnerPipeline(
    retriever_id='sentence-transformers/all-MiniLM-L6-v2',      # Dense retriever model for nearest neighbor search
    llm_id='Qwen/Qwen2.5-0.5B-Instruct',                        # Lightweight instruction-tuned LLM for reasoning
    hf_token='...',                                             # Hugging Face token for accessing gated models
    batch_size=32,                                              # Batch size for training/prediction if supported
    top_k=5                                                     # Number of top retrievals to include in RAG prompting
)

# Run the pipeline: training, prediction, and evaluation in one call
outputs = pipeline(
    train_data=train_data,
    test_data=test_data,
    evaluate=True,              # Compute metrics like precision, recall, and F1
    task='term-typing'          # Specifies the task
                                # Other options: "taxonomy-discovery" or "non-taxonomy-discovery"
)

# Print final evaluation metrics
print("Metrics:", outputs['metrics'])

# Print the total time taken for the full pipeline execution
print("Elapsed time:", outputs['elapsed_time'])

# Print all outputs (including predictions)
print(outputs)

For more detailed documentation, see the Documentation

Citation

If you find our work helpful, feel free to give us a cite.

@inproceedings{babaei2023llms4ol,
  title={LLMs4OL: Large language models for ontology learning},
  author={Babaei Giglou, Hamed and D’Souza, Jennifer and Auer, S{\"o}ren},
  booktitle={International Semantic Web Conference},
  pages={408--427},
  year={2023},
  organization={Springer}
}
Downloads last month
113

Collection including SciKnowOrg/ontolearner-general_knowledge