Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
1.02k
1.02k
End of preview. Expand in Data Studio

πŸŒ€ SHAPES Motion Dataset

Dataset Preview Resolution License Motion Types

A high-quality synthetic dataset of geometric shapes in motion with rich textual descriptions

🌟 Dataset Highlights

  • 10,000 high-resolution images (1024Γ—1024 pixels)
  • Rich captions with motion dynamics and spatial relationships
  • Diverse geometric shapes with realistic motion trails
  • Multi-object scenes with complex interactions
  • Synthetic but realistic rendering with gradient backgrounds

πŸ“Š Dataset Structure

set_SHAPES/
β”œβ”€β”€ images/
β”‚   β”œβ”€β”€ 00001.jpg
β”‚   β”œβ”€β”€ 00002.jpg
β”‚   └── ... (10,000 files)
└── captions.csv

πŸ“‹ Metadata Columns

  • filename: Unique image identifier
  • caption: Detailed natural language description
  • motion_type: [moving, sliding, drifting, streaking, arcing]
  • dynamics: [constant, accelerating, decelerating, rotating, curving]
  • num_objects: Number of objects in scene (1-3)

🎨 Visual Features

🟦 Geometric Shapes

  • Basic: Circle, Square, Rectangle, Ellipse
  • Complex: Triangle, Pentagon
  • Size Variations: Tiny β†’ Huge (5 scales)
  • Color Palette: 14 distinct colors with contrasting outlines

🎬 Motion Dynamics

# Motion Types
MOTION_VERBS = ['moving', 'sliding', 'drifting', 'streaking', 'arcing']

# Dynamics
MOTION_DYNAMICS = [
    'at constant speed', 
    'while accelerating', 
    'while decelerating', 
    'while rotating', 
    'in a curve while rotating'
]

🎯 Spatial Relations

  • Positional: top-left, center, bottom-right, etc.
  • Relative: passing by, near, adjacent to
  • Size comparisons: larger than, smaller than

πŸ“ Example Captions

Motion Scene:
"A large wide blue rectangle with a yellow outline is sliding while accelerating from the top left towards the bottom center, passing by a static medium standard red circle with a black outline in the middle."

Static Scene:
"An image with a huge green pentagon with magenta outline in the bottom right and a tiny tall orange ellipse with cyan outline in the top center."

πŸš€ Quick Start

Installation

pip install datasets pillow

Load Dataset

from datasets import load_dataset

dataset = load_dataset("Maazwaheed/set_SHAPES")
print(f"Dataset size: {len(dataset['train'])}")
print(f"Sample caption: {dataset['train'][0]['caption']}")

fast load

import os
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
from datasets import load_dataset
from PIL import Image
import pandas as pd
from tqdm import tqdm
import io
import threading

# Configuration
DATASET_NAME = "Maazwaheed/set_SHAPES"
OUTPUT_DIR = "advanced_motion_dataset"
IMAGES_DIR = os.path.join(OUTPUT_DIR, "images")
MAX_WORKERS = 16  # Adjust based on system capabilities
HF_TOKEN = os.getenv("HF_TOKEN")  # Ensure HF_TOKEN is set in environment
LOG_DIR = "logs"
LOG_FILE = os.path.join(LOG_DIR, "download.log")

# Setup logging
os.makedirs(LOG_DIR, exist_ok=True)
logging.basicConfig(
    filename=LOG_FILE,
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s"
)

# Thread-safe counter for tracking downloaded images
download_counter = 0
counter_lock = threading.Lock()

def setup_directories():
    """Create output directories if they don't exist."""
    try:
        os.makedirs(OUTPUT_DIR, exist_ok=True)
        os.makedirs(IMAGES_DIR, exist_ok=True)
        logging.info(f"Created directories: {OUTPUT_DIR}, {IMAGES_DIR}")
    except Exception as e:
        logging.error(f"Failed to create directories: {e}")
        raise

def download_image(item, index):
    """Download and save a single image with its filename."""
    try:
        image = item["image"]
        filename = item.get("filename", f"{str(index+1).zfill(5)}.jpg")
        image_path = os.path.join(IMAGES_DIR, filename)

        # Convert to RGB if needed and save as JPEG
        if image.mode != "RGB":
            image = image.convert("RGB")
        image.save(image_path, "JPEG", quality=95)

        # Increment counter thread-safely
        global download_counter
        with counter_lock:
            download_counter += 1

        return filename, item.get("caption", ""), None
    except Exception as e:
        logging.error(f"Failed to download image at index {index}: {e}")
        return None, None, str(e)

def download_dataset():
    """Download the dataset efficiently using parallel processing."""
    try:
        # Load dataset
        logging.info(f"Loading dataset: {DATASET_NAME}")
        dataset = load_dataset(DATASET_NAME, split="train", use_auth_token=HF_TOKEN)
        logging.info(f"Dataset loaded with {len(dataset)} items")

        # Setup directories
        setup_directories()

        # Prepare metadata
        metadata = []

        # Download images in parallel
        logging.info(f"Starting parallel download with {MAX_WORKERS} workers")
        with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
            future_to_index = {executor.submit(download_image, dataset[i], i): i for i in range(len(dataset))}
            progress_bar = tqdm(total=len(dataset), desc="Downloading images")

            for future in as_completed(future_to_index):
                index = future_to_index[future]
                filename, caption, error = future.result()
                if filename and caption is not None:
                    metadata.append([filename, caption])
                else:
                    logging.warning(f"Skipped item at index {index} due to error: {error}")
                progress_bar.update(1)

            progress_bar.close()

        # Save captions.csv
        try:
            csv_path = os.path.join(OUTPUT_DIR, "captions.csv")
            with open(csv_path, "w", newline="", encoding="utf-8") as f:
                writer = pd.DataFrame(metadata, columns=["filename", "caption"])
                writer.to_csv(f, index=False)
            logging.info(f"Saved captions to {csv_path}")
        except Exception as e:
            logging.error(f"Failed to save captions.csv: {e}")
            raise

        logging.info(f"Downloaded {download_counter} images to {IMAGES_DIR}")
        print(f"Dataset downloaded successfully! {download_counter} images saved to {IMAGES_DIR}, captions saved to {csv_path}")

    except Exception as e:
        logging.error(f"Dataset download failed: {e}")
        raise

if __name__ == "__main__":
    try:
        download_dataset()
    except Exception as e:
        print(f"Error downloading dataset: {e}")
        logging.error(f"Main execution failed: {e}")
        raise

Advanced Usage

# Filter motion scenes
motion_scenes = [item for item in dataset['train'] 
                if 'moving' in item['caption'] or 'sliding' in item['caption']]

# Get multi-object scenes
multi_object = [item for item in dataset['train'] 
               if 'and' in item['caption']]

πŸ“Š Statistics

Metric Value
Total Images 10,000
Motion Scenes ~6,000
Static Scenes ~4,000
Avg. Caption Length 35 words
Color Variations 14 colors
Shape Types 6 shapes

🎯 intended Use

βœ… Primary Tasks

  • Image Captioning - Rich descriptions for training
  • Visual Question Answering - Spatial reasoning
  • Motion Understanding - Dynamic scene analysis
  • Object Detection - Multi-object recognition
  • Synthetic-to-Real Transfer - Domain adaptation

⚠️ Limitations

  • Synthetic data (not real-world)
  • Limited to geometric shapes
  • Predetermined color palette
  • Simplified physics model

πŸ”§ Technical Details

Generation Process

  1. Background: Gradient generation with smooth transitions
  2. Shapes: Anti-aliased rendering with outlines
  3. Motion: BΓ©zier curves with trail effects
  4. Composition: Multi-object placement with occlusion handling
  5. Captions: Rule-based natural language generation

Technical Specs

  • Format: JPEG (quality=95)
  • Color Space: RGB
  • Resolution: 1024Γ—1024
  • Size per Image: ~150-250KB
  • Total Dataset Size: 561MB

πŸ“œ License

MPL-2.0 - Allows commercial use, modification, and distribution with appropriate attribution.

🀝 Contributing

We welcome contributions! Please:

  1. Fork the repository
  2. Create a feature branch
  3. Submit a pull request
  4. Open issues for suggestions

πŸ“ž Contact

Maintainer: Maaz Waheed
Email: [Your Email]
Hugging Face: Maazwaheed

πŸ™ Acknowledgments

  • Hugging Face for dataset hosting
  • PIL/Pillow community for image processing
  • Open-source community for inspiration

⭐ Star this dataset if you find it useful!

Hugging Face License

Downloads last month
60