Datasets:
Modalities:
Image
Formats:
imagefolder
Sub-tasks:
image-captioning
Languages:
English
Size:
10K - 100K
Tags:
computer-vision
synthetic-data
geometric-shapes
motion-analysis
multi-object
spatial-reasoning
License:
Dataset Viewer
Search is not available for this dataset
image
imagewidth (px) 1.02k
1.02k
|
|---|
End of preview. Expand
in Data Studio
π SHAPES Motion Dataset
π Dataset Highlights
- 10,000 high-resolution images (1024Γ1024 pixels)
- Rich captions with motion dynamics and spatial relationships
- Diverse geometric shapes with realistic motion trails
- Multi-object scenes with complex interactions
- Synthetic but realistic rendering with gradient backgrounds
π Dataset Structure
set_SHAPES/
βββ images/
β βββ 00001.jpg
β βββ 00002.jpg
β βββ ... (10,000 files)
βββ captions.csv
π Metadata Columns
filename: Unique image identifiercaption: Detailed natural language descriptionmotion_type: [moving, sliding, drifting, streaking, arcing]dynamics: [constant, accelerating, decelerating, rotating, curving]num_objects: Number of objects in scene (1-3)
π¨ Visual Features
π¦ Geometric Shapes
- Basic: Circle, Square, Rectangle, Ellipse
- Complex: Triangle, Pentagon
- Size Variations: Tiny β Huge (5 scales)
- Color Palette: 14 distinct colors with contrasting outlines
π¬ Motion Dynamics
# Motion Types
MOTION_VERBS = ['moving', 'sliding', 'drifting', 'streaking', 'arcing']
# Dynamics
MOTION_DYNAMICS = [
'at constant speed',
'while accelerating',
'while decelerating',
'while rotating',
'in a curve while rotating'
]
π― Spatial Relations
- Positional: top-left, center, bottom-right, etc.
- Relative: passing by, near, adjacent to
- Size comparisons: larger than, smaller than
π Example Captions
Motion Scene:
"A large wide blue rectangle with a yellow outline is sliding while accelerating from the top left towards the bottom center, passing by a static medium standard red circle with a black outline in the middle."
Static Scene:
"An image with a huge green pentagon with magenta outline in the bottom right and a tiny tall orange ellipse with cyan outline in the top center."
π Quick Start
Installation
pip install datasets pillow
Load Dataset
from datasets import load_dataset
dataset = load_dataset("Maazwaheed/set_SHAPES")
print(f"Dataset size: {len(dataset['train'])}")
print(f"Sample caption: {dataset['train'][0]['caption']}")
fast load
import os
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
from datasets import load_dataset
from PIL import Image
import pandas as pd
from tqdm import tqdm
import io
import threading
# Configuration
DATASET_NAME = "Maazwaheed/set_SHAPES"
OUTPUT_DIR = "advanced_motion_dataset"
IMAGES_DIR = os.path.join(OUTPUT_DIR, "images")
MAX_WORKERS = 16 # Adjust based on system capabilities
HF_TOKEN = os.getenv("HF_TOKEN") # Ensure HF_TOKEN is set in environment
LOG_DIR = "logs"
LOG_FILE = os.path.join(LOG_DIR, "download.log")
# Setup logging
os.makedirs(LOG_DIR, exist_ok=True)
logging.basicConfig(
filename=LOG_FILE,
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s"
)
# Thread-safe counter for tracking downloaded images
download_counter = 0
counter_lock = threading.Lock()
def setup_directories():
"""Create output directories if they don't exist."""
try:
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(IMAGES_DIR, exist_ok=True)
logging.info(f"Created directories: {OUTPUT_DIR}, {IMAGES_DIR}")
except Exception as e:
logging.error(f"Failed to create directories: {e}")
raise
def download_image(item, index):
"""Download and save a single image with its filename."""
try:
image = item["image"]
filename = item.get("filename", f"{str(index+1).zfill(5)}.jpg")
image_path = os.path.join(IMAGES_DIR, filename)
# Convert to RGB if needed and save as JPEG
if image.mode != "RGB":
image = image.convert("RGB")
image.save(image_path, "JPEG", quality=95)
# Increment counter thread-safely
global download_counter
with counter_lock:
download_counter += 1
return filename, item.get("caption", ""), None
except Exception as e:
logging.error(f"Failed to download image at index {index}: {e}")
return None, None, str(e)
def download_dataset():
"""Download the dataset efficiently using parallel processing."""
try:
# Load dataset
logging.info(f"Loading dataset: {DATASET_NAME}")
dataset = load_dataset(DATASET_NAME, split="train", use_auth_token=HF_TOKEN)
logging.info(f"Dataset loaded with {len(dataset)} items")
# Setup directories
setup_directories()
# Prepare metadata
metadata = []
# Download images in parallel
logging.info(f"Starting parallel download with {MAX_WORKERS} workers")
with ThreadPoolExecutor(max_workers=MAX_WORKERS) as executor:
future_to_index = {executor.submit(download_image, dataset[i], i): i for i in range(len(dataset))}
progress_bar = tqdm(total=len(dataset), desc="Downloading images")
for future in as_completed(future_to_index):
index = future_to_index[future]
filename, caption, error = future.result()
if filename and caption is not None:
metadata.append([filename, caption])
else:
logging.warning(f"Skipped item at index {index} due to error: {error}")
progress_bar.update(1)
progress_bar.close()
# Save captions.csv
try:
csv_path = os.path.join(OUTPUT_DIR, "captions.csv")
with open(csv_path, "w", newline="", encoding="utf-8") as f:
writer = pd.DataFrame(metadata, columns=["filename", "caption"])
writer.to_csv(f, index=False)
logging.info(f"Saved captions to {csv_path}")
except Exception as e:
logging.error(f"Failed to save captions.csv: {e}")
raise
logging.info(f"Downloaded {download_counter} images to {IMAGES_DIR}")
print(f"Dataset downloaded successfully! {download_counter} images saved to {IMAGES_DIR}, captions saved to {csv_path}")
except Exception as e:
logging.error(f"Dataset download failed: {e}")
raise
if __name__ == "__main__":
try:
download_dataset()
except Exception as e:
print(f"Error downloading dataset: {e}")
logging.error(f"Main execution failed: {e}")
raise
Advanced Usage
# Filter motion scenes
motion_scenes = [item for item in dataset['train']
if 'moving' in item['caption'] or 'sliding' in item['caption']]
# Get multi-object scenes
multi_object = [item for item in dataset['train']
if 'and' in item['caption']]
π Statistics
| Metric | Value |
|---|---|
| Total Images | 10,000 |
| Motion Scenes | ~6,000 |
| Static Scenes | ~4,000 |
| Avg. Caption Length | 35 words |
| Color Variations | 14 colors |
| Shape Types | 6 shapes |
π― intended Use
β Primary Tasks
- Image Captioning - Rich descriptions for training
- Visual Question Answering - Spatial reasoning
- Motion Understanding - Dynamic scene analysis
- Object Detection - Multi-object recognition
- Synthetic-to-Real Transfer - Domain adaptation
β οΈ Limitations
- Synthetic data (not real-world)
- Limited to geometric shapes
- Predetermined color palette
- Simplified physics model
π§ Technical Details
Generation Process
- Background: Gradient generation with smooth transitions
- Shapes: Anti-aliased rendering with outlines
- Motion: BΓ©zier curves with trail effects
- Composition: Multi-object placement with occlusion handling
- Captions: Rule-based natural language generation
Technical Specs
- Format: JPEG (quality=95)
- Color Space: RGB
- Resolution: 1024Γ1024
- Size per Image: ~150-250KB
- Total Dataset Size: 561MB
π License
MPL-2.0 - Allows commercial use, modification, and distribution with appropriate attribution.
π€ Contributing
We welcome contributions! Please:
- Fork the repository
- Create a feature branch
- Submit a pull request
- Open issues for suggestions
π Contact
Maintainer: Maaz Waheed
Email: [Your Email]
Hugging Face: Maazwaheed
π Acknowledgments
- Hugging Face for dataset hosting
- PIL/Pillow community for image processing
- Open-source community for inspiration
- Downloads last month
- 60