Datasets:
Dataset Card for the image text and voice dataset
Dataset Description
Each datapoint in this dataset consists of a JPEG image, a corresponding audio Webm file describing the image, and when available, the transcription of the audio file.
| Domain | Total Hours | Transcribed Hours | Number of Clips | Dataset Size (GB) |
|---|---|---|---|---|
| Agriculture | 467.13 | 465.40 | 86,305 | 30.13 |
| Health | 994.32 | 992.87 | 179,219 | 58.53 |
| Finance | 564.21 | 563.11 | 103,159 | 38.55 |
| Government | 676.10 | 674.11 | 122,265 | 49.22 |
| Education | 198.49 | 197.52 | 37,377 | 13.70 |
| Total | 2900.24 | 2893.01 | 528,668 | 190.13 |
How to use
The datasets library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive in two ways:
Direct download of the whole dataset to a local directory
from huggingface_hub import snapshot_download
snapshot_download(repo_id="DigitalUmuganda/Afrivoice_Kinyarwanda",repo_type='dataset',local_dir='<destination_dir>')
Or, using load_dataset to download a particular domain
from datasets import load_dataset
data = load_dataset("DigitalUmuganda/Afrivoice_Kinyarwanda",name='health')
Dataset Structure
Data Instances
{'creator_id': 'bcSXMYbErjM6pJyAwwLs7NAxA9v2',
'raw_text': 'Ingagi ihagaze yonyine. Ingagi ni nziza cyane, kuko zikurura ba mukerarugendo bakazana amadovize mu Gihugu cyacu.',
'duration': 15.06,
'LUFS': -25.5,
'image_category': 'Agriculture',
'image_sub_category': 'Wild Animals',
'text': 'ingagi ihagaze yonyine ingagi ni nziza cyane kuko zikurura ba mukerarugendo bakazana amadovize mu gihugu cyacu',
'audio_filepath': 'audio_1751479904-bcSXMYbErjM6pJyAwwLs7NAxA9v2.webm',
'image_filepath': 'restyf.jpg',
'age_group': '50+',
'gender': 'Male',
'location': 'Musanze',
'shard_id': 0,
'image_shard_id': 0}
Data Fields
creator (string): An id for which client (voice) made the recording
raw_text (string): Original audio transcription with punctuation and capitalization
image_filepath (string): name of the image file inside the shard
audio_filepath (string): name of the audio file inside the shard
text (string): normalized audio transcription (i.e: without punctuation and capitalization)
age_group (string): age range of the audio recorder
gender (string): The gender of the speaker
location (string): geographical location of the audio recorder
duration (int): length in seconds of the audio file
image_category (string): domain of the image (eg: health, agriculture, finance), used as prompt during audio creation.
image_sub_category (string): Sub-domain label of the image (e.g., within agriculture: “seed farming” or “forestry”), used to guide audio creation.
shard_id (int): index of the shard containing the audio file in the audio_filepath column.
image_shard_id (int): index of the shard containing the image in the image_filepath column.
LUFS (int): Loudness of the audio in Loudness Units relative to Full Scale (LUFS). Lower values indicate quieter audio, while higher values indicate louder audio.
Data Splits
Each domain in the dataset is divided into train, validation, and test splits.
Licensing Information
All datasets are licensed under the Creative Commons license (CC-BY-4).
- Downloads last month
- 33