939e288661b92f61f880cfebac3fab14

This model is a fine-tuned version of albert/albert-xlarge-v2 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6592
  • Data Size: 0.25
  • Epoch Runtime: 211.5803
  • Accuracy: 0.6320
  • F1 Macro: 0.3872
  • Rouge1: 0.6318
  • Rouge2: 0.0
  • Rougel: 0.6319
  • Rougelsum: 0.6317

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.6735 0 25.3866 0.6320 0.3872 0.6318 0.0 0.6319 0.6317
0.6769 1 11370 0.6582 0.0078 33.2381 0.6320 0.3872 0.6318 0.0 0.6319 0.6317
0.6607 2 22740 0.6575 0.0156 37.6410 0.6320 0.3872 0.6318 0.0 0.6319 0.6317
0.6572 3 34110 0.6576 0.0312 49.7020 0.6320 0.3872 0.6318 0.0 0.6319 0.6317
0.6649 4 45480 0.6587 0.0625 72.0545 0.6320 0.3872 0.6318 0.0 0.6319 0.6317
0.6626 5 56850 0.6588 0.125 121.5581 0.6320 0.3872 0.6318 0.0 0.6319 0.6317
0.657 6 68220 0.6592 0.25 211.5803 0.6320 0.3872 0.6318 0.0 0.6319 0.6317

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
2
Safetensors
Model size
58.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/939e288661b92f61f880cfebac3fab14

Finetuned
(21)
this model