786803fb46c971c9608429e8dab90069

This model is a fine-tuned version of albert/albert-xlarge-v2 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6935
  • Data Size: 0.25
  • Epoch Runtime: 63.3036
  • Accuracy: 0.4943
  • F1 Macro: 0.3308
  • Rouge1: 0.4947
  • Rouge2: 0.0
  • Rougel: 0.4943
  • Rougelsum: 0.4944

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.7887 0 4.3758 0.4943 0.3308 0.4947 0.0 0.4943 0.4944
No log 1 3273 0.6953 0.0078 6.4227 0.4943 0.3308 0.4947 0.0 0.4943 0.4944
0.0118 2 6546 0.6927 0.0156 8.1931 0.5024 0.4157 0.5020 0.0 0.5019 0.5024
0.718 3 9819 0.6973 0.0312 11.9350 0.4943 0.3308 0.4947 0.0 0.4943 0.4944
0.7175 4 13092 0.6931 0.0625 19.1269 0.5057 0.3359 0.5053 0.0 0.5057 0.5056
0.7213 5 16365 0.7066 0.125 33.6047 0.4943 0.3308 0.4947 0.0 0.4943 0.4944
0.7133 6 19638 0.6935 0.25 63.3036 0.4943 0.3308 0.4947 0.0 0.4943 0.4944

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
2
Safetensors
Model size
58.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/786803fb46c971c9608429e8dab90069

Finetuned
(23)
this model