364f3cb8be37487da327a4b9e7b21db6
This model is a fine-tuned version of albert/albert-xlarge-v2 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.6203
- Data Size: 1.0
- Epoch Runtime: 18.4563
- Accuracy: 0.6885
- F1 Macro: 0.4078
- Rouge1: 0.6895
- Rouge2: 0.0
- Rougel: 0.6885
- Rougelsum: 0.6885
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.9244 | 0 | 1.2587 | 0.3115 | 0.2375 | 0.3105 | 0.0 | 0.3115 | 0.3115 |
| No log | 1 | 267 | 0.7516 | 0.0078 | 2.3332 | 0.3252 | 0.2623 | 0.3247 | 0.0 | 0.3242 | 0.3252 |
| No log | 2 | 534 | 0.6663 | 0.0156 | 1.6425 | 0.6855 | 0.4097 | 0.6860 | 0.0 | 0.6855 | 0.6846 |
| No log | 3 | 801 | 0.6601 | 0.0312 | 2.0593 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 4 | 1068 | 0.6239 | 0.0625 | 2.5486 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.039 | 5 | 1335 | 0.6780 | 0.125 | 3.6344 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6234 | 6 | 1602 | 0.6325 | 0.25 | 5.7406 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6221 | 7 | 1869 | 0.6496 | 0.5 | 10.0145 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6057 | 8.0 | 2136 | 0.6215 | 1.0 | 18.5374 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6121 | 9.0 | 2403 | 0.6457 | 1.0 | 18.5910 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.619 | 10.0 | 2670 | 0.6204 | 1.0 | 18.5799 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6186 | 11.0 | 2937 | 0.6215 | 1.0 | 18.6167 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.625 | 12.0 | 3204 | 0.6189 | 1.0 | 18.2625 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6155 | 13.0 | 3471 | 0.6207 | 1.0 | 18.6488 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6248 | 14.0 | 3738 | 0.6209 | 1.0 | 18.8002 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.5885 | 15.0 | 4005 | 0.6289 | 1.0 | 18.5706 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.6225 | 16.0 | 4272 | 0.6203 | 1.0 | 18.4563 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 1
Model tree for contemmcm/364f3cb8be37487da327a4b9e7b21db6
Base model
albert/albert-xlarge-v2