35b96e33a85d72fe1d21de2af5344577

This model is a fine-tuned version of albert/albert-xlarge-v2 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7461
  • Data Size: 0.125
  • Epoch Runtime: 18.2523
  • Accuracy: 0.5093
  • F1 Macro: 0.3374
  • Rouge1: 0.5093
  • Rouge2: 0.0
  • Rougel: 0.5093
  • Rougelsum: 0.5081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.7831 0 1.1613 0.4907 0.3292 0.4907 0.0 0.4907 0.4919
No log 1 2104 0.6978 0.0078 3.4121 0.5093 0.3374 0.5093 0.0 0.5093 0.5081
No log 2 4208 0.7473 0.0156 3.3892 0.5093 0.3374 0.5093 0.0 0.5093 0.5081
0.0158 3 6312 0.7109 0.0312 5.5223 0.5093 0.3374 0.5093 0.0 0.5093 0.5081
0.7103 4 8416 0.6980 0.0625 9.7736 0.4907 0.3292 0.4907 0.0 0.4907 0.4919
0.7087 5 10520 0.7461 0.125 18.2523 0.5093 0.3374 0.5093 0.0 0.5093 0.5081

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
2
Safetensors
Model size
58.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/35b96e33a85d72fe1d21de2af5344577

Finetuned
(20)
this model