metadata
license: apache-2.0
base_model: binh230/mambaformer
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: mambaformer
results: []
mambaformer
This model is a fine-tuned version of binh230/mambaformer on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4950
- Accuracy: 0.7747
- Precision: 0.8314
- Recall: 0.7747
- F1: 0.7647
- Auroc: 0.9429
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.03
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auroc |
|---|---|---|---|---|---|---|---|---|
| 0.6026 | 0.0471 | 256 | 0.5927 | 0.6776 | 0.7982 | 0.6776 | 0.6414 | 0.9217 |
| 0.3481 | 0.0941 | 512 | 0.4428 | 0.8167 | 0.8239 | 0.8167 | 0.8157 | 0.9015 |
| 0.2434 | 0.1412 | 768 | 0.4749 | 0.7833 | 0.8043 | 0.7833 | 0.7795 | 0.8934 |
| 0.1975 | 0.1882 | 1024 | 0.5786 | 0.7304 | 0.7949 | 0.7304 | 0.7149 | 0.8979 |
| 0.1749 | 0.2353 | 1280 | 0.6214 | 0.7157 | 0.7952 | 0.7157 | 0.6952 | 0.9004 |
| 0.1644 | 0.2824 | 1536 | 0.6323 | 0.7107 | 0.7984 | 0.7107 | 0.6877 | 0.9123 |
| 0.1556 | 0.3294 | 1792 | 0.6491 | 0.7046 | 0.7990 | 0.7046 | 0.6793 | 0.9161 |
| 0.1476 | 0.3765 | 2048 | 0.6989 | 0.6884 | 0.7955 | 0.6884 | 0.6573 | 0.9203 |
| 0.1466 | 0.4235 | 2304 | 0.6633 | 0.7014 | 0.8016 | 0.7014 | 0.6744 | 0.9241 |
| 0.1405 | 0.4706 | 2560 | 0.6076 | 0.7229 | 0.8071 | 0.7229 | 0.7026 | 0.9250 |
| 0.1399 | 0.5177 | 2816 | 0.6221 | 0.7164 | 0.8042 | 0.7164 | 0.6943 | 0.9248 |
| 0.135 | 0.5647 | 3072 | 0.6249 | 0.7150 | 0.8064 | 0.7150 | 0.6920 | 0.9290 |
| 0.1339 | 0.6118 | 3328 | 0.6109 | 0.7233 | 0.8108 | 0.7233 | 0.7024 | 0.9340 |
| 0.1297 | 0.6589 | 3584 | 0.5931 | 0.7306 | 0.8127 | 0.7306 | 0.7117 | 0.9360 |
| 0.1298 | 0.7059 | 3840 | 0.5644 | 0.7439 | 0.8170 | 0.7439 | 0.7282 | 0.9357 |
| 0.1275 | 0.7530 | 4096 | 0.5526 | 0.7475 | 0.8209 | 0.7475 | 0.7322 | 0.9416 |
| 0.1268 | 0.8000 | 4352 | 0.5564 | 0.7470 | 0.8203 | 0.7470 | 0.7317 | 0.9412 |
| 0.1235 | 0.8471 | 4608 | 0.5439 | 0.7537 | 0.8238 | 0.7537 | 0.7396 | 0.9436 |
| 0.1231 | 0.8942 | 4864 | 0.5051 | 0.7693 | 0.8292 | 0.7693 | 0.7583 | 0.9446 |
| 0.1222 | 0.9412 | 5120 | 0.5254 | 0.7611 | 0.8241 | 0.7611 | 0.7488 | 0.9405 |
| 0.1198 | 0.9883 | 5376 | 0.5439 | 0.7534 | 0.8230 | 0.7534 | 0.7394 | 0.9408 |
Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.19.1
- Tokenizers 0.19.1