mambaformer / README.md
binh230's picture
End of training
8d0a7aa verified
|
raw
history blame
4.49 kB
metadata
license: apache-2.0
base_model: binh230/mambaformer
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: mambaformer
    results: []

Visualize in Weights & Biases Visualize in Weights & Biases Visualize in Weights & Biases

mambaformer

This model is a fine-tuned version of binh230/mambaformer on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4950
  • Accuracy: 0.7747
  • Precision: 0.8314
  • Recall: 0.7747
  • F1: 0.7647
  • Auroc: 0.9429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.03

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auroc
0.6026 0.0471 256 0.5927 0.6776 0.7982 0.6776 0.6414 0.9217
0.3481 0.0941 512 0.4428 0.8167 0.8239 0.8167 0.8157 0.9015
0.2434 0.1412 768 0.4749 0.7833 0.8043 0.7833 0.7795 0.8934
0.1975 0.1882 1024 0.5786 0.7304 0.7949 0.7304 0.7149 0.8979
0.1749 0.2353 1280 0.6214 0.7157 0.7952 0.7157 0.6952 0.9004
0.1644 0.2824 1536 0.6323 0.7107 0.7984 0.7107 0.6877 0.9123
0.1556 0.3294 1792 0.6491 0.7046 0.7990 0.7046 0.6793 0.9161
0.1476 0.3765 2048 0.6989 0.6884 0.7955 0.6884 0.6573 0.9203
0.1466 0.4235 2304 0.6633 0.7014 0.8016 0.7014 0.6744 0.9241
0.1405 0.4706 2560 0.6076 0.7229 0.8071 0.7229 0.7026 0.9250
0.1399 0.5177 2816 0.6221 0.7164 0.8042 0.7164 0.6943 0.9248
0.135 0.5647 3072 0.6249 0.7150 0.8064 0.7150 0.6920 0.9290
0.1339 0.6118 3328 0.6109 0.7233 0.8108 0.7233 0.7024 0.9340
0.1297 0.6589 3584 0.5931 0.7306 0.8127 0.7306 0.7117 0.9360
0.1298 0.7059 3840 0.5644 0.7439 0.8170 0.7439 0.7282 0.9357
0.1275 0.7530 4096 0.5526 0.7475 0.8209 0.7475 0.7322 0.9416
0.1268 0.8000 4352 0.5564 0.7470 0.8203 0.7470 0.7317 0.9412
0.1235 0.8471 4608 0.5439 0.7537 0.8238 0.7537 0.7396 0.9436
0.1231 0.8942 4864 0.5051 0.7693 0.8292 0.7693 0.7583 0.9446
0.1222 0.9412 5120 0.5254 0.7611 0.8241 0.7611 0.7488 0.9405
0.1198 0.9883 5376 0.5439 0.7534 0.8230 0.7534 0.7394 0.9408

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.4.0+cu124
  • Datasets 2.19.1
  • Tokenizers 0.19.1