Gemma-3-270M Dhivehi — Text Generation Model

Compact Dhivehi (Þ‹Þ¨ÞˆÞ¬Þ€Þ¨) text generation model based on google/gemma-3-270m, designed to generate creative and coherent Dhivehi content based on prompts, titles, or instructions.

Note: This model is specifically tuned for text generation tasks and provides natural, flowing Dhivehi text outputs for content creation.

Model details

  • Base: google/gemma-3-270m-it
  • Language: Dhivehi
  • Style: Creative, natural, coherent
  • Output format: Flowing Dhivehi text
  • Supported tasks:
    • Random Dhivehi text generation

Intended use

  • To further downstream tasks

How to use

from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch

# Load model
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import torch

# Load model
model_path = "alakxender/gemma-3-270m-dhivehi-text-gen"
model = AutoModelForCausalLM.from_pretrained(
    model_path, 
    torch_dtype="auto", 
    device_map="auto", 
    attn_implementation="eager"
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

# Generate content
title_or_prompt = "Þ‹Þ¨ÞˆÞ¬Þ€Þ¨ÞƒÞ§Þ‡Þ°Þ–Þ¬Þ‡Þ¦Þ†Þ© Þ‡Þ¨Þ‚Þ°Þ‘Þ¨Þ”Þ§ Þ†Þ¦Þ‚Þ‘ÞªÞŽÞ¦Þ‡Þ¨ Þ‡Þ®Þ‚Þ°Þ‚Þ¦ Þ–Þ¦Þ’Þ©ÞƒÞ§ Þ¤Þ¦Þ‡ÞªÞ‰Þ¬Þ†Þ¬ÞˆÞ¬"

# Create the prompt format used during training
prompt = f"Create a dhivehi article for the following topic: {title_or_prompt}"

# Create chat format message for content generation (matching training format)
messages = [
    {"role": "system", "content": "You are a helpful assistant that can generate dhivehi articles based on a given topic."},
    {"role": "user", "content": prompt}
]

# Apply chat template
formatted_prompt = pipe.tokenizer.apply_chat_template(
    messages, 
    tokenize=False, 
    add_generation_prompt=True
)

# Generation parameters
gen_kwargs = {
    "max_new_tokens": 256,
    "temperature": 0.7,
    "top_p": 0.9,
    "top_k": 50,
    "do_sample": True,
    "disable_compile": True,
    "pad_token_id": tokenizer.eos_token_id
}

# Generate content
outputs = pipe(formatted_prompt, **gen_kwargs)

# Extract generated content (remove the prompt)
generated_content = outputs[0]['generated_text'][len(formatted_prompt):].strip()

print(f"Generated content: {generated_content}")

Generation Parameters

  • max_new_tokens: Controls the length of generated text (64-512 recommended)
  • temperature: Controls randomness (0.1-1.0, higher = more creative)
  • do_sample: Boolean flag to enable/disable sampling

Limitations

  • Generated content may not always be factually accurate
  • Quality depends on the clarity and specificity of input prompts
  • Context window limitations for very long inputs
  • The model is specifically trained for text generation tasks in Dhivehi
Downloads last month
1
Safetensors
Model size
0.3B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for alakxender/gemma-3-270m-dhivehi-content-gen

Finetuned
(828)
this model

Dataset used to train alakxender/gemma-3-270m-dhivehi-content-gen