wavlm-base-ug-combined-2de
This model is a fine-tuned version of microsoft/wavlm-base on the AJIKADEV/UGANDAN-ENGLISH - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.1440
- Wer: 0.1389
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000.0
- training_steps: 30000
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.2685 | 2.4117 | 3000 | 0.2399 | 0.2679 |
| 0.1763 | 4.8235 | 6000 | 0.1947 | 0.2208 |
| 0.1175 | 7.2348 | 9000 | 0.1777 | 0.2065 |
| 0.0892 | 9.6466 | 12000 | 0.1667 | 0.1852 |
| 0.0686 | 12.0579 | 15000 | 0.1585 | 0.1739 |
| 0.0479 | 14.4696 | 18000 | 0.1461 | 0.1634 |
| 0.039 | 16.8814 | 21000 | 0.1453 | 0.1538 |
| 0.0284 | 19.2927 | 24000 | 0.1471 | 0.1473 |
| 0.021 | 21.7045 | 27000 | 0.1443 | 0.1417 |
| 0.0163 | 24.1158 | 30000 | 0.1440 | 0.1388 |
Framework versions
- Transformers 5.0.0.dev0
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 78
Model tree for ajikadev/wavlm-base-ug-combined-2de
Base model
microsoft/wavlm-base