wavlm-base-ug-combined-2de

This model is a fine-tuned version of microsoft/wavlm-base on the AJIKADEV/UGANDAN-ENGLISH - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1440
  • Wer: 0.1389

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000.0
  • training_steps: 30000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2685 2.4117 3000 0.2399 0.2679
0.1763 4.8235 6000 0.1947 0.2208
0.1175 7.2348 9000 0.1777 0.2065
0.0892 9.6466 12000 0.1667 0.1852
0.0686 12.0579 15000 0.1585 0.1739
0.0479 14.4696 18000 0.1461 0.1634
0.039 16.8814 21000 0.1453 0.1538
0.0284 19.2927 24000 0.1471 0.1473
0.021 21.7045 27000 0.1443 0.1417
0.0163 24.1158 30000 0.1440 0.1388

Framework versions

  • Transformers 5.0.0.dev0
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.22.1
Downloads last month
78
Safetensors
Model size
94.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ajikadev/wavlm-base-ug-combined-2de

Finetuned
(21)
this model