wavlm-base-ug-SALT

This model is a fine-tuned version of microsoft/wavlm-base on the AJIKADEV/SALT-MULTISPEAKER-ENG-SPLIT - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2918
  • Wer: 0.2407

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500.0
  • training_steps: 30000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3581 4.0 1000 0.3489 0.3778
0.1517 8.0 2000 0.3196 0.3228
0.1054 12.0 3000 0.3126 0.3190
0.0815 16.0 4000 0.3153 0.3174
0.0717 20.0 5000 0.3173 0.3005
0.0653 24.0 6000 0.3022 0.3013
0.0562 28.0 7000 0.3266 0.2967
0.0499 32.0 8000 0.3567 0.3111
0.0455 36.0 9000 0.3616 0.2914
0.041 40.0 10000 0.3337 0.2941
0.0364 44.0 11000 0.3307 0.2945
0.0329 48.0 12000 0.3231 0.2804
0.0285 52.0 13000 0.3193 0.2846
0.0269 56.0 14000 0.3407 0.2859
0.0225 60.0 15000 0.3022 0.2685
0.0212 64.0 16000 0.3226 0.2798
0.0184 68.0 17000 0.3173 0.2713
0.0168 72.0 18000 0.2998 0.2666
0.0144 76.0 19000 0.3141 0.2707
0.0127 80.0 20000 0.3115 0.2709
0.012 84.0 21000 0.3057 0.2662
0.0097 88.0 22000 0.3378 0.2611
0.0074 92.0 23000 0.3201 0.2603
0.0085 96.0 24000 0.3074 0.2584
0.0071 100.0 25000 0.2947 0.2529
0.0059 104.0 26000 0.2864 0.2538
0.0056 108.0 27000 0.2859 0.2511
0.0039 112.0 28000 0.3004 0.2466
0.0031 116.0 29000 0.2997 0.2431
0.0034 120.0 30000 0.2925 0.2412

Framework versions

  • Transformers 5.0.0.dev0
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.22.1
Downloads last month
171
Safetensors
Model size
94.4M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ajikadev/wavlm-base-ug-SALT

Finetuned
(21)
this model