Model Card for act
ACT trained on PushT dataset for 80,000 training steps. Trained for 3.5 hrs on T4 GPU on Colab free.
The goal is to use this to compare ACTs performance on PushT against diffusion policy particularly the aspect of action multimodality.
Training logs: https://api.wandb.ai/links/ramachandranaadarsh-indian-institute-of-technology-madras/7m9dpcgw
Action Chunking with Transformers (ACT) is an imitation-learning method that predicts short action chunks instead of single steps. It learns from teleoperated data and often achieves high success rates.
This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at LeRobot Docs.
How to Get Started with the Model
For a complete walkthrough, see the training guide. Below is the short version on how to train and run inference/eval:
Train from scratch
lerobot-train \
--dataset.repo_id=${HF_USER}/<dataset> \
--policy.type=act \
--output_dir=outputs/train/<desired_policy_repo_id> \
--job_name=lerobot_training \
--policy.device=cuda \
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
--wandb.enable=true
Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.
Evaluate the policy/run inference
lerobot-record \
--robot.type=so100_follower \
--dataset.repo_id=<hf_user>/eval_<dataset> \
--policy.path=<hf_user>/<desired_policy_repo_id> \
--episodes=10
Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.
Model Details
- License: apache-2.0
- Downloads last month
- 41