ZhiguangHan's picture
End of training
3d59789
|
raw
history blame
2.3 kB
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-mt5-small
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-mt5-small
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7125
- Rouge1: 0.5005
- Rouge2: 0.1542
- Rougel: 0.4577
- Rougelsum: 0.4587
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.7151 | 1.0 | 250 | 2.2431 | 0.3662 | 0.0891 | 0.3557 | 0.3556 |
| 2.4198 | 2.0 | 500 | 2.0873 | 0.3997 | 0.1027 | 0.3884 | 0.3883 |
| 2.2232 | 3.0 | 750 | 2.0082 | 0.4453 | 0.1309 | 0.4201 | 0.4203 |
| 2.0842 | 4.0 | 1000 | 1.9100 | 0.4663 | 0.1467 | 0.4275 | 0.4274 |
| 1.9825 | 5.0 | 1250 | 1.8493 | 0.4671 | 0.1457 | 0.4228 | 0.4228 |
| 1.9048 | 6.0 | 1500 | 1.7759 | 0.49 | 0.1545 | 0.4503 | 0.4508 |
| 1.8606 | 7.0 | 1750 | 1.7438 | 0.4996 | 0.1577 | 0.4575 | 0.4585 |
| 1.8208 | 8.0 | 2000 | 1.7236 | 0.4975 | 0.1533 | 0.4555 | 0.4556 |
| 1.788 | 9.0 | 2250 | 1.7200 | 0.4983 | 0.156 | 0.4566 | 0.4572 |
| 1.7799 | 10.0 | 2500 | 1.7125 | 0.5005 | 0.1542 | 0.4577 | 0.4587 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0