Wildstash's picture
Upload README.md with huggingface_hub
1f867e9 verified
---
license: apache-2.0
base_model: Qwen/Qwen2.5-3B-Instruct
tags:
- peft
- lora
- business-strategy
- reinforcement-learning
- grpo
library_name: transformers
---
# Business Strategy Model (GRPO Fine-tuned)
This model is a fine-tuned version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) using GRPO (Group Relative Policy Optimization) for business strategy generation.
## Training Details
- **Base Model**: Qwen/Qwen2.5-3B-Instruct (3B parameters)
- **Fine-tuning Method**: LoRA adapters with GRPO
- **Dataset**: OrgStrategy-Reasoning-1k-v2
- **Use Case**: Strategic business planning and decision-making
## Usage
### With PEFT:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
base_model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2.5-3B-Instruct",
torch_dtype="auto",
device_map="auto"
)
model = PeftModel.from_pretrained(base_model, "Wildstash/business-strategy-grpo")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-3B-Instruct")
# Generate strategy
prompt = "A tech startup wants to compete against established market leaders. Recommend a strategy."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
## Deployment
This model can be deployed on:
- Hugging Face Inference Endpoints (recommended)
- AWS SageMaker
- Local inference with GPU
## License
Apache 2.0