Tsunami-0.5x-7B-Instruct
TSUNAMI: Transformative Semantic Understanding and Natural Augmentation Model for Intelligence.
TSUNAMI full name was created by ChatGPT.
infomation
Tsunami-0.5x-7B-Instruct is Thai Large Language Model that fine-tuned from Qwen2.5-7B around 100,000 rows in Thai dataset.
Prompt Template
This model uses ChatML prompt template:
<|im_start|>system
{System}<|im_end|>
<|im_start|>user
{User}<|im_end|>
<|im_start|>assistant
{Assistant}
How to use
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "Tsunami-th/Tsunami-0.5x-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "เธชเธงเธฑเธชเธเธตเธเธฃเธฑเธ"}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
inputs = tokenizer(text, return_tensors="pt")
inputs = inputs.to(model.device)
with torch.no_grad():
   output = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(output[0, len(inputs['input_ids'][0]):], skip_special_tokens=True)
Author
- Pollakrit Lorprasertkul | [email protected]
 
- Tsunami-0.5x-7B-Instruct is the version 0.5x that did not train on the whole dataset.
 - Tsunami-1.0-7B-Instruct is coming soon.
 
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 29.80 | 
| IFEval (0-Shot) | 70.99 | 
| BBH (3-Shot) | 37.36 | 
| MATH Lvl 5 (4-Shot) | 4.83 | 
| GPQA (0-shot) | 8.61 | 
| MuSR (0-shot) | 18.57 | 
| MMLU-PRO (5-shot) | 38.42 | 
- Downloads last month
 - 4
 
Model tree for Tsunami-th/Tsunami-0.5x-7B-Instruct
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard70.990
 - normalized accuracy on BBH (3-Shot)Open LLM Leaderboard37.360
 - exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard4.830
 - acc_norm on GPQA (0-shot)Open LLM Leaderboard8.610
 - acc_norm on MuSR (0-shot)Open LLM Leaderboard18.570
 - accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard38.420