HGU_rulebook-Llama3.2-Bllossom-5B_fine-tuning-QLoRA-8_32_6

This model is a fine-tuned version of Bllossom/llama-3.2-Korean-Bllossom-AICA-5B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.6808

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1884
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
5.9932 0.5982 94 5.8611
5.6904 1.1965 188 5.6907
5.6867 1.7947 282 5.6848
5.6817 2.3930 376 5.6827
5.6787 2.9912 470 5.6810
5.6761 3.5895 564 5.6809
5.6719 4.1877 658 5.6807
5.6775 4.7860 752 5.6802
5.6745 5.3842 846 5.6804
5.6768 5.9825 940 5.6797
5.6737 6.5807 1034 5.6799
5.6724 7.1790 1128 5.6802
5.6718 7.7772 1222 5.6800
5.6729 8.3755 1316 5.6801
5.6693 8.9737 1410 5.6801
5.6723 9.5720 1504 5.6806
5.6719 10.1702 1598 5.6806
5.6636 10.7685 1692 5.6808
5.6714 11.3667 1786 5.6808
5.671 11.9650 1880 5.6808

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.2
  • Pytorch 2.0.1+cu118
  • Datasets 3.0.0
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for TARARARAK/HGU_rulebook-Llama3.2-Bllossom-5B_fine-tuning-QLoRA-8_32_6

Adapter
(9)
this model