Parameter: 750M

Context Length: 512

F1: 0.76

Precision: 0.79

Recall: 0.74

BibTeX:

@misc {schneider2024GerPolClass, author = { Schneider, Sinclair A M }, title = { German Politics Party Text Classifier }, year = { 2024 }, month = { June }, url = { https://huggingface.co/SinclairSchneider/german_politic_direction_DeBERTa-large }, publisher = { Hugging Face }, note = { DeBERTa transformer model } }

Ideology Prediction of German Political Texts based on DeBERTa-large (highly experimental)

Predicts the ideology of German texts on a scale from -1 (left-wing) over 0 (liberal) to 1 (right wing)

Simple example

from transformers import pipeline, DebertaV2ForSequenceClassification, AutoTokenizer
import numpy as np
import pandas as pd
import torch

model_name = "SinclairSchneider/german_politic_direction_DeBERTa-large"
model = DebertaV2ForSequenceClassification.from_pretrained(model_name, dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_name)
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, top_k=None)

vectors = np.array([[-1, 0],
                    [-9.99193435e-01,  4.01556900e-02],
                    [-9.18323655e-01,  3.95830349e-01],
                    [ 3.82683432e-01,  9.23879533e-01],
                    [ 8.69790824e-01,  4.93420634e-01],
                    [1, 0]])

def classify(text):
    classification_result = np.array(pd.DataFrame(pipe(text)[0]).sort_values(by=['label'], key=lambda x: x.map({'DIE LINKE':0, 
                                                                                                                'BÜNDNIS 90/DIE GRÜNEN':1, 
                                                                                                                'SPD':2, 
                                                                                                                'FDP':3, 
                                                                                                                'CDU/CSU':4, 
                                                                                                                'AfD':5}))['score'])
    return float(np.arctan2(*classification_result@vectors)/(np.pi/2))

#Links
print(classify("Wir brauchen eine Vermögensteuer, um den Sozialstaat nachhaltig zu finanzieren."))
#-0.8840736055794486
print(classify("Mietendeckel und mehr gemeinnütziger Wohnungsbau sollen Wohnen bezahlbar machen."))
#-0.9584728540548622
print(classify("Die Energiewende muss mit massiven öffentlichen Investitionen beschleunigt werden."))
#-0.8996415250285207


#Mitte
print(classify("Die soziale Marktwirtschaft braucht moderne Regeln und weniger Bürokratie."))
#0.2951027133966755
print(classify("Gezielte Entlastungen für kleine und mittlere Einkommen stärken die Mitte."))
#-0.5463382000342903
print(classify("Bildungsoffensive: Basiskompetenzen sichern, Weiterbildung im Beruf fördern."))
#0.16923175427437903

#Rechts
print(classify("Deutsche Leitkultur und Sprache stärker in öffentlichen Einrichtungen betonen."))
#0.9907646874287308
print(classify("Grenzschutz an EU-Außengrenzen verstärken, Sekundärmigration begrenzen."))
#0.7533596283240895
print(classify("Identitätspolitik an Schulen und Behörden zurückfahren, Fokus auf Leistungsprinzip."))
#0.9748775694774731
Downloads last month
22
Safetensors
Model size
0.9B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for SinclairSchneider/german_politic_direction_DeBERTa-large

Finetuned
(1)
this model

Dataset used to train SinclairSchneider/german_politic_direction_DeBERTa-large

Collection including SinclairSchneider/german_politic_direction_DeBERTa-large