October ES-EN-IT
Collection
12 items
โข
Updated
Slur reclamation binary classifier
Task: LGBTQ+ reclamation vs non-reclamation use of harmful words on social media text.
Trial timestamp (UTC): 2025-10-12 20:56:06
Data case:
en-es-it
Model: Alibaba-NLP/gte-multilingual-base
| Hyperparameter | Value |
|---|---|
| LANGUAGES | en-es-it |
| LR | 2e-05 |
| EPOCHS | 3 |
| MAX_LENGTH | 256 |
| USE_BIO | False |
| USE_LANG_TOKEN | False |
| GATED_BIO | False |
| FOCAL_LOSS | True |
| FOCAL_GAMMA | 2.5 |
| USE_SAMPLER | True |
| R_DROP | True |
| R_KL_ALPHA | 0.5 |
| TEXT_NORMALIZE | True |
| Metric | Value |
|---|---|
| f1_macro_dev_0.5 | 0.7148663237442052 |
| f1_weighted_dev_0.5 | 0.8397177643197989 |
| accuracy_dev_0.5 | 0.821826280623608 |
| f1_macro_dev_best_global | 0.7349841198459766 |
| f1_weighted_dev_best_global | 0.864951679724489 |
| accuracy_dev_best_global | 0.8596881959910914 |
| f1_macro_dev_best_by_lang | 0.7336960726166224 |
| f1_weighted_dev_best_by_lang | 0.8575109332646288 |
| accuracy_dev_best_by_lang | 0.8463251670378619 |
| default_threshold | 0.5 |
| best_threshold_global | 0.6 |
| thresholds_by_lang | {"en": 0.5, "it": 0.55, "es": 0.6} |
0.50.6{ "en": 0.5, "it": 0.55, "es": 0.6 } precision recall f1-score support
no-recl (0) 0.9499 0.8364 0.8895 385
recl (1) 0.4273 0.7344 0.5402 64
accuracy 0.8218 449
macro avg 0.6886 0.7854 0.7149 449
weighted avg 0.8754 0.8218 0.8397 449
precision recall f1-score support
no-recl (0) 0.9328 0.9013 0.9168 385
recl (1) 0.5065 0.6094 0.5532 64
accuracy 0.8597 449
macro avg 0.7196 0.7553 0.7350 449
weighted avg 0.8720 0.8597 0.8650 449
precision recall f1-score support
no-recl (0) 0.9438 0.8727 0.9069 385
recl (1) 0.4731 0.6875 0.5605 64
accuracy 0.8463 449
macro avg 0.7085 0.7801 0.7337 449
weighted avg 0.8767 0.8463 0.8575 449
| lang | n | acc | f1_macro | f1_weighted | prec_macro | rec_macro | prec_weighted | rec_weighted |
|---|---|---|---|---|---|---|---|---|
| en | 154 | 0.8117 | 0.6081 | 0.8429 | 0.5925 | 0.6877 | 0.8910 | 0.8117 |
| it | 163 | 0.8773 | 0.8056 | 0.8787 | 0.7987 | 0.8132 | 0.8805 | 0.8773 |
| es | 132 | 0.8485 | 0.7533 | 0.8601 | 0.7255 | 0.8080 | 0.8827 | 0.8485 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import torch, numpy as np
repo = "SimoneAstarita/october-finetuning-more-variables-sweep-20251012-205606-t13"
tok = AutoTokenizer.from_pretrained(repo)
cfg = AutoConfig.from_pretrained(repo)
model = AutoModelForSequenceClassification.from_pretrained(repo)
texts = ["example text ..."]
langs = ["en"]
mode = "best_global" # or "0.5", "by_lang"
enc = tok(texts, truncation=True, padding=True, max_length=256, return_tensors="pt")
with torch.no_grad():
logits = model(**enc).logits
probs = torch.softmax(logits, dim=-1)[:, 1].cpu().numpy()
if mode == "0.5":
th = 0.5
preds = (probs >= th).astype(int)
elif mode == "best_global":
th = getattr(cfg, "best_threshold_global", 0.5)
preds = (probs >= th).astype(int)
elif mode == "by_lang":
th_by_lang = getattr(cfg, "thresholds_by_lang", {})
preds = np.zeros_like(probs, dtype=int)
for lg in np.unique(langs):
t = th_by_lang.get(lg, getattr(cfg, "best_threshold_global", 0.5))
preds[np.array(langs) == lg] = (probs[np.array(langs) == lg] >= t).astype(int)
print(list(zip(texts, preds, probs)))
reports.json: all metrics (macro/weighted/accuracy) for @0.5, @best_global, and @best_by_lang. config.json: stores thresholds: default_threshold, best_threshold_global, thresholds_by_lang. postprocessing.json: duplicate threshold info for external tools.