october-finetuning-more-variables-sweep-20251012-204304-t11

Slur reclamation binary classifier
Task: LGBTQ+ reclamation vs non-reclamation use of harmful words on social media text.

Trial timestamp (UTC): 2025-10-12 20:43:04

Data case: en-es-it

Configuration (trial hyperparameters)

Model: Alibaba-NLP/gte-multilingual-base

Hyperparameter Value
LANGUAGES en-es-it
LR 1e-05
EPOCHS 5
MAX_LENGTH 256
USE_BIO False
USE_LANG_TOKEN False
GATED_BIO False
FOCAL_LOSS True
FOCAL_GAMMA 2.5
USE_SAMPLER True
R_DROP True
R_KL_ALPHA 1.0
TEXT_NORMALIZE True

Dev set results (summary)

Metric Value
f1_macro_dev_0.5 0.6706772784019975
f1_weighted_dev_0.5 0.8127803080225442
accuracy_dev_0.5 0.7906458797327395
f1_macro_dev_best_global 0.722815063056707
f1_weighted_dev_best_global 0.8697842222606763
accuracy_dev_best_global 0.8752783964365256
f1_macro_dev_best_by_lang 0.7045809688296735
f1_weighted_dev_best_by_lang 0.8565143987671885
accuracy_dev_best_by_lang 0.8574610244988864
default_threshold 0.5
best_threshold_global 0.55
thresholds_by_lang {"en": 0.5, "it": 0.55, "es": 0.55}

Thresholds

  • Default: 0.5
  • Best global: 0.55
  • Best by language: { "en": 0.5, "it": 0.55, "es": 0.55 }

Detailed evaluation

Classification report @ 0.5

              precision    recall  f1-score   support

 no-recl (0)     0.9343    0.8130    0.8694       385
    recl (1)     0.3684    0.6562    0.4719        64

    accuracy                         0.7906       449
   macro avg     0.6514    0.7346    0.6707       449
weighted avg     0.8537    0.7906    0.8128       449

Classification report @ best global threshold (t=0.55)

              precision    recall  f1-score   support

 no-recl (0)     0.9144    0.9429    0.9284       385
    recl (1)     0.5769    0.4688    0.5172        64

    accuracy                         0.8753       449
   macro avg     0.7456    0.7058    0.7228       449
weighted avg     0.8663    0.8753    0.8698       449

Classification report @ best per-language thresholds

              precision    recall  f1-score   support

 no-recl (0)     0.9147    0.9195    0.9171       385
    recl (1)     0.5000    0.4844    0.4921        64

    accuracy                         0.8575       449
   macro avg     0.7074    0.7019    0.7046       449
weighted avg     0.8556    0.8575    0.8565       449

Per-language metrics (at best-by-lang)

lang n acc f1_macro f1_weighted prec_macro rec_macro prec_weighted rec_weighted
en 154 0.8442 0.4959 0.8442 0.4959 0.4959 0.8442 0.8442
it 163 0.8773 0.7903 0.8740 0.8077 0.7761 0.8722 0.8773
es 132 0.8485 0.7169 0.8514 0.7091 0.7259 0.8548 0.8485

Data

  • Train/Dev: private multilingual splits with ~15% stratified Dev (by (lang,label)).
  • Source: merged EN/IT/ES data with bios retained (ignored if unused by model).

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import torch, numpy as np

repo = "SimoneAstarita/october-finetuning-more-variables-sweep-20251012-204304-t11"
tok = AutoTokenizer.from_pretrained(repo)
cfg = AutoConfig.from_pretrained(repo)
model = AutoModelForSequenceClassification.from_pretrained(repo)

texts = ["example text ..."]
langs = ["en"]

mode = "best_global"  # or "0.5", "by_lang"

enc = tok(texts, truncation=True, padding=True, max_length=256, return_tensors="pt")
with torch.no_grad():
    logits = model(**enc).logits
probs = torch.softmax(logits, dim=-1)[:, 1].cpu().numpy()

if mode == "0.5":
    th = 0.5
    preds = (probs >= th).astype(int)
elif mode == "best_global":
    th = getattr(cfg, "best_threshold_global", 0.5)
    preds = (probs >= th).astype(int)
elif mode == "by_lang":
    th_by_lang = getattr(cfg, "thresholds_by_lang", {})
    preds = np.zeros_like(probs, dtype=int)
    for lg in np.unique(langs):
        t = th_by_lang.get(lg, getattr(cfg, "best_threshold_global", 0.5))
        preds[np.array(langs) == lg] = (probs[np.array(langs) == lg] >= t).astype(int)
print(list(zip(texts, preds, probs)))

Additional files

reports.json: all metrics (macro/weighted/accuracy) for @0.5, @best_global, and @best_by_lang. config.json: stores thresholds: default_threshold, best_threshold_global, thresholds_by_lang. postprocessing.json: duplicate threshold info for external tools.

Downloads last month
4
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Collection including SimoneAstarita/trilingual-no-bio-20251012-204304-t19