october-project-first-sweep-20251007-142350-t01
Multilingual XLM-T (EN/IT/ES) binary classifier
Task: LGBTQ+ reclamation vs non-reclamation on social media text.
Trial timestamp (UTC): 2025-10-07 14:23:50
Configuration (trial hyperparameters)
| Hyperparameter | Value |
|---|---|
| LR | 1e-05 |
| EPOCHS | 3 |
| MAX_LENGTH | 256 |
| USE_BIO | True |
| USE_LANG_TOKEN | True |
| GATED_BIO | True |
| FOCAL_LOSS | True |
| FOCAL_GAMMA | 1.5 |
| USE_SAMPLER | True |
| R_DROP | True |
| R_KL_ALPHA | 1.0 |
Dev set results
| Metric | Value |
|---|---|
| trial | 1 |
| cfg | {'LR': 1e-05, 'EPOCHS': 3.0, 'MAX_LENGTH': 256.0, 'USE_BIO': 1.0, 'USE_LANG_TOKEN': 1.0, 'GATED_BIO': 1.0, 'FOCAL_LOSS': 1.0, 'FOCAL_GAMMA': 1.5, 'USE_SAMPLER': 1.0, 'R_DROP': 1.0, 'R_KL_ALPHA': 1.0} |
| f1_macro_dev | 0.7642181107650974 |
| best_threshold_dev | 0.85 |
| precision_macro_dev | 0.8431519699812383 |
| recall_macro_dev | 0.7226866883116883 |
Data
- Train/Dev: private dataset (merged
train_en.csv,train_it.csv,train_es.csvwith 15% stratified Dev). - The dataset id is intentionally not disclosed in metadata.
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tok = AutoTokenizer.from_pretrained("SimoneAstarita/october-project-first-sweep-20251007-142350-t01")
model = AutoModelForSequenceClassification.from_pretrained("SimoneAstarita/october-project-first-sweep-20251007-142350-t01")