october-project-first-sweep-20251007-142350-t01

Multilingual XLM-T (EN/IT/ES) binary classifier
Task: LGBTQ+ reclamation vs non-reclamation on social media text.

Trial timestamp (UTC): 2025-10-07 14:23:50

Configuration (trial hyperparameters)

Hyperparameter Value
LR 1e-05
EPOCHS 3
MAX_LENGTH 256
USE_BIO True
USE_LANG_TOKEN True
GATED_BIO True
FOCAL_LOSS True
FOCAL_GAMMA 1.5
USE_SAMPLER True
R_DROP True
R_KL_ALPHA 1.0

Dev set results

Metric Value
trial 1
cfg {'LR': 1e-05, 'EPOCHS': 3.0, 'MAX_LENGTH': 256.0, 'USE_BIO': 1.0, 'USE_LANG_TOKEN': 1.0, 'GATED_BIO': 1.0, 'FOCAL_LOSS': 1.0, 'FOCAL_GAMMA': 1.5, 'USE_SAMPLER': 1.0, 'R_DROP': 1.0, 'R_KL_ALPHA': 1.0}
f1_macro_dev 0.7642181107650974
best_threshold_dev 0.85
precision_macro_dev 0.8431519699812383
recall_macro_dev 0.7226866883116883

Data

  • Train/Dev: private dataset (merged train_en.csv, train_it.csv, train_es.csv with 15% stratified Dev).
  • The dataset id is intentionally not disclosed in metadata.

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification
tok = AutoTokenizer.from_pretrained("SimoneAstarita/october-project-first-sweep-20251007-142350-t01")
model = AutoModelForSequenceClassification.from_pretrained("SimoneAstarita/october-project-first-sweep-20251007-142350-t01")
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support