it-no-bio-20251014-t21

Slur reclamation binary classifier
Task: LGBTQ+ reclamation vs non-reclamation use of harmful words on social media text.

Trial timestamp (UTC): 2025-10-14 11:10:28

Data case: it

Configuration (trial hyperparameters)

Model: Alibaba-NLP/gte-multilingual-base

Hyperparameter Value
LANGUAGES it
LR 2e-05
EPOCHS 3
MAX_LENGTH 256
USE_BIO False
USE_LANG_TOKEN False
GATED_BIO False
FOCAL_LOSS True
FOCAL_GAMMA 2.5
USE_SAMPLER True
R_DROP True
R_KL_ALPHA 0.5
TEXT_NORMALIZE True

Dev set results (summary)

Metric Value
f1_macro_dev_0.5 0.7979572611433388
f1_weighted_dev_0.5 0.8594012496247203
accuracy_dev_0.5 0.8466257668711656
f1_macro_dev_best_global 0.9114611624117328
f1_weighted_dev_best_global 0.9451185172102385
accuracy_dev_best_global 0.9447852760736196
f1_macro_dev_best_by_lang 0.9114611624117328
f1_weighted_dev_best_by_lang 0.9451185172102385
accuracy_dev_best_by_lang 0.9447852760736196
default_threshold 0.5
best_threshold_global 0.7000000000000001
thresholds_by_lang {"it": 0.7000000000000001}

Thresholds

  • Default: 0.5
  • Best global: 0.7000000000000001
  • Best by language: { "it": 0.7000000000000001 }

Detailed evaluation

Classification report @ 0.5

              precision    recall  f1-score   support

 no-recl (0)     0.9820    0.8258    0.8971       132
    recl (1)     0.5577    0.9355    0.6988        31

    accuracy                         0.8466       163
   macro avg     0.7698    0.8806    0.7980       163
weighted avg     0.9013    0.8466    0.8594       163

Classification report @ best global threshold (t=0.70)

              precision    recall  f1-score   support

 no-recl (0)     0.9695    0.9621    0.9658       132
    recl (1)     0.8438    0.8710    0.8571        31

    accuracy                         0.9448       163
   macro avg     0.9066    0.9165    0.9115       163
weighted avg     0.9456    0.9448    0.9451       163

Classification report @ best per-language thresholds

              precision    recall  f1-score   support

 no-recl (0)     0.9695    0.9621    0.9658       132
    recl (1)     0.8438    0.8710    0.8571        31

    accuracy                         0.9448       163
   macro avg     0.9066    0.9165    0.9115       163
weighted avg     0.9456    0.9448    0.9451       163

Per-language metrics (at best-by-lang)

lang n acc f1_macro f1_weighted prec_macro rec_macro prec_weighted rec_weighted
it 163 0.9448 0.9115 0.9451 0.9066 0.9165 0.9456 0.9448

Data

  • Train/Dev: private multilingual splits with ~15% stratified Dev (by (lang,label)).
  • Source: merged EN/IT/ES data with bios retained (ignored if unused by model).

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import torch, numpy as np

repo = "SimoneAstarita/it-no-bio-20251014-t21"
tok = AutoTokenizer.from_pretrained(repo)
cfg = AutoConfig.from_pretrained(repo)
model = AutoModelForSequenceClassification.from_pretrained(repo)

texts = ["example text ..."]
langs = ["en"]

mode = "best_global"  # or "0.5", "by_lang"

enc = tok(texts, truncation=True, padding=True, max_length=256, return_tensors="pt")
with torch.no_grad():
    logits = model(**enc).logits
probs = torch.softmax(logits, dim=-1)[:, 1].cpu().numpy()

if mode == "0.5":
    th = 0.5
    preds = (probs >= th).astype(int)
elif mode == "best_global":
    th = getattr(cfg, "best_threshold_global", 0.5)
    preds = (probs >= th).astype(int)
elif mode == "by_lang":
    th_by_lang = getattr(cfg, "thresholds_by_lang", {})
    preds = np.zeros_like(probs, dtype=int)
    for lg in np.unique(langs):
        t = th_by_lang.get(lg, getattr(cfg, "best_threshold_global", 0.5))
        preds[np.array(langs) == lg] = (probs[np.array(langs) == lg] >= t).astype(int)
print(list(zip(texts, preds, probs)))

Additional files

reports.json: all metrics (macro/weighted/accuracy) for @0.5, @best_global, and @best_by_lang. config.json: stores thresholds: default_threshold, best_threshold_global, thresholds_by_lang. postprocessing.json: duplicate threshold info for external tools.

Downloads last month
20
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support