whisper-large-v3-DI-28.08.25

This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5691
  • Wer: 22.8586

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.0 88 0.4634 35.4412
No log 2.0 176 0.5425 35.6356
No log 3.0 264 0.5338 26.4351
No log 4.0 352 0.5240 37.7867
No log 5.0 440 0.5445 33.2901
0.2671 6.0 528 0.5544 30.2449
0.2671 7.0 616 0.5712 31.1131
0.2671 8.0 704 0.5839 24.4266
0.2671 9.0 792 0.5667 25.6836
0.2671 10.0 880 0.5691 22.8586

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.0
Downloads last month
1
Safetensors
Model size
0.8B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Rziane/whisper-large-v3-DI-28.08.25

Finetuned
(385)
this model