whisper-large-v3-DI-28.08.25
This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5691
- Wer: 22.8586
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 150
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| No log | 1.0 | 88 | 0.4634 | 35.4412 |
| No log | 2.0 | 176 | 0.5425 | 35.6356 |
| No log | 3.0 | 264 | 0.5338 | 26.4351 |
| No log | 4.0 | 352 | 0.5240 | 37.7867 |
| No log | 5.0 | 440 | 0.5445 | 33.2901 |
| 0.2671 | 6.0 | 528 | 0.5544 | 30.2449 |
| 0.2671 | 7.0 | 616 | 0.5712 | 31.1131 |
| 0.2671 | 8.0 | 704 | 0.5839 | 24.4266 |
| 0.2671 | 9.0 | 792 | 0.5667 | 25.6836 |
| 0.2671 | 10.0 | 880 | 0.5691 | 22.8586 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.0
- Downloads last month
- 1
Model tree for Rziane/whisper-large-v3-DI-28.08.25
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo