Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/SmolLM-1.7B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - fb22517d47ba5b91_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/fb22517d47ba5b91_train_data.json
  type:
    field_input: qwq
    field_instruction: problem
    field_output: text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 30
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: true
group_by_length: false
hub_model_id: Romain-XV/4157dfa5-3988-47c6-9e3b-00f818ce862e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
micro_batch_size: 4
mlflow_experiment_name: /tmp/fb22517d47ba5b91_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 970212e9-dc67-48c8-8ec8-461afe128ee2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 970212e9-dc67-48c8-8ec8-461afe128ee2
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

4157dfa5-3988-47c6-9e3b-00f818ce862e

This model is a fine-tuned version of unsloth/SmolLM-1.7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.3936 0.0008 1 nan
0.2524 0.0401 50 nan
0.0903 0.0803 100 nan
0.0332 0.1204 150 nan
0.0204 0.1605 200 nan
0.0032 0.2006 250 nan
0.005 0.2408 300 nan
0.0009 0.2809 350 nan
0.0001 0.3210 400 nan
0.0005 0.3612 450 nan
0.0004 0.4013 500 nan
0.0008 0.4414 550 nan
0.0001 0.4815 600 nan
0.0003 0.5217 650 nan
0.0001 0.5618 700 nan
0.0003 0.6019 750 nan
0.0001 0.6421 800 nan
0.0001 0.6822 850 nan
0.0002 0.7223 900 nan
0.0002 0.7624 950 nan
0.0001 0.8026 1000 nan
0.0001 0.8427 1050 nan
0.0002 0.8828 1100 nan
0.0001 0.9230 1150 nan
0.0025 0.9631 1200 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Romain-XV/4157dfa5-3988-47c6-9e3b-00f818ce862e

Adapter
(148)
this model