results

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1227
  • Accuracy: 0.9649
  • Precision: 0.9649
  • Recall: 0.9649
  • F1: 0.9649

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1173 1.0 8 1.0626 0.3509 0.3412 0.3509 0.3384
1.0344 2.0 16 1.1812 0.1930 0.0414 0.1930 0.0681
0.9769 3.0 24 1.1062 0.2807 0.6266 0.2807 0.2029
0.9195 4.0 32 0.9446 0.4561 0.5992 0.4561 0.4418
0.8194 5.0 40 0.8509 0.5439 0.6157 0.5439 0.5253
0.7036 6.0 48 0.6097 0.8246 0.8494 0.8246 0.8165
0.6208 7.0 56 0.5003 0.8947 0.9077 0.8947 0.8973
0.5432 8.0 64 0.4162 0.9298 0.9362 0.9298 0.9314
0.4862 9.0 72 0.3117 0.9649 0.9649 0.9649 0.9649
0.4233 10.0 80 0.2689 0.9649 0.9649 0.9649 0.9649
0.3872 11.0 88 0.2193 0.9649 0.9649 0.9649 0.9649
0.3512 12.0 96 0.1933 0.9649 0.9649 0.9649 0.9649
0.328 13.0 104 0.1725 0.9649 0.9649 0.9649 0.9649
0.2959 14.0 112 0.1629 0.9649 0.9649 0.9649 0.9649
0.2815 15.0 120 0.1454 0.9649 0.9649 0.9649 0.9649
0.2699 16.0 128 0.1428 0.9649 0.9649 0.9649 0.9649
0.2513 17.0 136 0.1379 0.9649 0.9649 0.9649 0.9649
0.241 18.0 144 0.1357 0.9649 0.9649 0.9649 0.9649
0.2402 19.0 152 0.1325 0.9649 0.9649 0.9649 0.9649
0.2264 20.0 160 0.1303 0.9649 0.9649 0.9649 0.9649
0.2246 21.0 168 0.1286 0.9649 0.9649 0.9649 0.9649
0.2234 22.0 176 0.1248 0.9649 0.9649 0.9649 0.9649
0.2146 23.0 184 0.1254 0.9649 0.9649 0.9649 0.9649
0.2042 24.0 192 0.1250 0.9649 0.9649 0.9649 0.9649
0.2145 25.0 200 0.1231 0.9649 0.9649 0.9649 0.9649
0.2015 26.0 208 0.1229 0.9649 0.9649 0.9649 0.9649
0.2065 27.0 216 0.1227 0.9649 0.9649 0.9649 0.9649
0.2021 28.0 224 0.1229 0.9649 0.9649 0.9649 0.9649
0.2002 29.0 232 0.1229 0.9649 0.9649 0.9649 0.9649
0.2085 30.0 240 0.1229 0.9649 0.9649 0.9649 0.9649

Framework versions

  • Transformers 4.56.2
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
12
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Noctuaru/topik-syariah-p2

Finetuned
(73)
this model