results
This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1227
- Accuracy: 0.9649
- Precision: 0.9649
- Recall: 0.9649
- F1: 0.9649
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 1.1173 | 1.0 | 8 | 1.0626 | 0.3509 | 0.3412 | 0.3509 | 0.3384 |
| 1.0344 | 2.0 | 16 | 1.1812 | 0.1930 | 0.0414 | 0.1930 | 0.0681 |
| 0.9769 | 3.0 | 24 | 1.1062 | 0.2807 | 0.6266 | 0.2807 | 0.2029 |
| 0.9195 | 4.0 | 32 | 0.9446 | 0.4561 | 0.5992 | 0.4561 | 0.4418 |
| 0.8194 | 5.0 | 40 | 0.8509 | 0.5439 | 0.6157 | 0.5439 | 0.5253 |
| 0.7036 | 6.0 | 48 | 0.6097 | 0.8246 | 0.8494 | 0.8246 | 0.8165 |
| 0.6208 | 7.0 | 56 | 0.5003 | 0.8947 | 0.9077 | 0.8947 | 0.8973 |
| 0.5432 | 8.0 | 64 | 0.4162 | 0.9298 | 0.9362 | 0.9298 | 0.9314 |
| 0.4862 | 9.0 | 72 | 0.3117 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.4233 | 10.0 | 80 | 0.2689 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.3872 | 11.0 | 88 | 0.2193 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.3512 | 12.0 | 96 | 0.1933 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.328 | 13.0 | 104 | 0.1725 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2959 | 14.0 | 112 | 0.1629 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2815 | 15.0 | 120 | 0.1454 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2699 | 16.0 | 128 | 0.1428 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2513 | 17.0 | 136 | 0.1379 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.241 | 18.0 | 144 | 0.1357 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2402 | 19.0 | 152 | 0.1325 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2264 | 20.0 | 160 | 0.1303 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2246 | 21.0 | 168 | 0.1286 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2234 | 22.0 | 176 | 0.1248 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2146 | 23.0 | 184 | 0.1254 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2042 | 24.0 | 192 | 0.1250 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2145 | 25.0 | 200 | 0.1231 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2015 | 26.0 | 208 | 0.1229 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2065 | 27.0 | 216 | 0.1227 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2021 | 28.0 | 224 | 0.1229 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2002 | 29.0 | 232 | 0.1229 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
| 0.2085 | 30.0 | 240 | 0.1229 | 0.9649 | 0.9649 | 0.9649 | 0.9649 |
Framework versions
- Transformers 4.56.2
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 12
Model tree for Noctuaru/topik-syariah-p2
Base model
indobenchmark/indobert-base-p2